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Abstract
We study single-player extensive-form games with
imperfect recall, such as the Sleeping Beauty prob-
lem or the Absentminded Driver game. For such
games, two natural equilibrium concepts have been
proposed as alternative solution concepts to ex-ante
optimality. One equilibrium concept uses general-
ized double halving (GDH) as a belief system and
evidential decision theory (EDT), and another one
uses generalized thirding (GT) as a belief system
and causal decision theory (CDT). Our findings re-
late those three solution concepts of a game to solu-
tion concepts of a polynomial maximization prob-
lem: global optima, optimal points with respect
to subsets of variables and Karush–Kuhn–Tucker
(KKT) points. Based on these correspondences, we
are able to settle various complexity-theoretic ques-
tions on the computation of such strategies. For
ex-ante optimality and (EDT,GDH)-equilibria, we
obtain NP-hardness and inapproximability, and for
(CDT,GT)-equilibria we obtain CLS-completeness
results.

1 Introduction
Most formalisms that are used for reasoning under uncer-
tainty and for decision making in AI – for example, HMMs,
(dynamic) Bayesian networks, influence diagrams, MDPs,
POMDPs, multiagent versions of these – assume what is
known as perfect recall: the agent does not forget anything
it knew before. This may seem to be a very natural assump-
tion: in the design of AI agents, generally we have plenty of
reliable memory available. Moreover, the property of perfect
recall ensures various desirable properties in the context of
extensive-form games, including polynomial-time solvability
of two-player zero-sum games [Koller and Megiddo, 1992]
(and hence, a fortiori, single-player games). Finally, even
when modeling humans – as in, for example, behavioral game
theory [Camerer, 2003] – in spite of our clearly imperfect
memory, usually perfect-recall models are used. So why use
models with imperfect recall in AI?
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It turns out there are a number of reasons why imperfect
recall is relevant for AI agents; moreover, in cases where it is
relevant, it is clear what the agent will and will not remember
– unlike in the case of human memory, which is harder to pre-
dict and consequently to model in standard representations of
imperfect recall. Imperfect-recall games already appear in the
AI literature in the context of solving very large games such
as poker: one technique for solving such games is abstraction
– i.e., reducing the game to a smaller, simplified one to solve
instead – and this process can give rise to imperfect recall in
the abstracted game [Waugh et al., 2009; Lanctot et al., 2012;
Kroer and Sandholm, 2016]. But imperfect recall is also of
interest for other reasons. First, we may deliberately choose
to have our agents forget: for example, the agent may tem-
porarily need access to data that is sensitive from a privacy
perspective, and therefore best forgotten afterwards. Conitzer
and Oesterheld [2023] give the example of an AI driver assis-
tant that can take over whenever the human car driver makes
a major error. When that happens, the AI needs to reason
about how good the human driver is in general, about whom
it is not allowed to store information. An AI agent could also
take the form of a highly distributed system operating across
many nodes, where not all the nodes have access to the same
information; hence, it may act at one node without having ac-
cess to information that it did have available when acting at
another node. Relatedly, the same agent (in the sense of being
based on the same source code) may be instantiated multiple
times, for example by human users deploying it in multiple
contexts. In such cases it can still be useful to consider this
family of instantiations as a single agent, but again these in-
stantiations will not all have access to the same information.
Finally, again building on the previous case, an agent may be
acting not only in the real world, but also in simulations; for
example, it may be simulated by another agent that wants to
ensure that another instantiation of the same agent will act in
a trustworthy fashion in the real world later [Kovarik et al.,
2023]. In this case, the real-world instantiation of the agent
will generally not have access to the information that the sim-
ulation had access to earlier.

Notably, we need to model this phenomenon as imper-
fect recall rather than merely as imperfect information. In
single-agent perfect-recall imperfect-information games (say,
a POMDP), there is never a (strict) reason to randomize,
whereas in imperfect-recall games the agent might have to
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randomize in order to perform well overall; cf. the Absent-
minded Driver example [Piccione and Rubinstein, 1997] (Ap-
pendix C). For example, suppose we deploy a content rec-
ommendation system to many people’s phones, in an edge-
computing sort of setup: We are not in constant communica-
tion with the phones, so the nodes of our system have to act
independently each day before getting back in touch with us.
Over the next day, we would like to experiment (in an opti-
mal way) what kind of content to recommend. With a pure
strategy, we would show all users the same content and learn
very little from it. Instead, we would prefer to randomize
the content shown on each phone, that is, use a mixed strat-
egy. Therefore, this situation cannot be a perfect-recall game
(even of imperfect information).

Being able to make decisions with imperfect recall also
represents a technical frontier. Many existing techniques
inherently rely on perfect recall. Solving two-player zero-
sum games becomes NP-hard as soon as one player has im-
perfect recall [Koller and Megiddo, 1992]. Moreover, in
these contexts, there remains controversy at the very foun-
dations of how to do probabilistic reasoning and decision
making. For example, the Sleeping Beauty problem [Elga,
2000] (Appendix C) asks one to give the probability of a state
of the world in an imperfect-recall setting; some (Thirders)
believe that the correct answer is 1/3, and others (Halvers)
believe it is 1/2, see Section 3.2. Only recently has a
clear picture started to emerge regarding how each of these
positions can be combined with a corresponding form of
decision theory to make good decisions [Hitchcock, 2004;
Draper and Pust, 2008; Briggs, 2010; Conitzer, 2015; Oester-
held and Conitzer, 2022]; here we build on that recent con-
ceptual work to define and study several foundational com-
putational problems.

In this paper, we use extensive-form games to represent
settings with imperfect recall. Even though we are consider-
ing a single-agent setting, the extensive form is still especially
natural to use to model imperfect-recall settings, specifically
with the use of information sets. Indeed, as we will discuss,
game-theoretic phenomena such as notions of equilibrium
naturally come up in the presence of imperfect recall even
when there is just a single agent. Intuitively that is because
it is more challenging for that agent to coordinate its actions
with those it takes at other times. Moreover, randomization is
in general necessary. We consider behavior strategies, which
map each information set to a probability distribution over
actions. Based on recent literature, we study three distinct
solution concepts: (1) ex ante optimality, where the behavior
strategy is one that maximizes expected utility at the outset;
(2) equilibria based on causal decision theory and generalized
thirding, in which an agent would not want to change its ac-
tion at any information set, under the assumption that at all
other game tree nodes (including ones in the same informa-
tion set) the agent would follow the original strategy; and (3)
equilibria based on evidential decision theory and generalized
double halving, in which an agent would not want to switch
to a different distribution over actions at a given information
set, assuming that the agent would also use the new distribu-
tion at other nodes in that information set (but would use the
original strategy at all other information sets).

Section 2 and 3 define those solution concepts and cover
previously known characterizations and hardness results.
Section 4 presents our novel results: First we show that the
equilibria based on causal decision theory and generalized
thirding are exactly the Karush–Kuhn–Tucker points of a cor-
responding utility maximization problem. This makes gradi-
ent descent methods applicable to the computation of such an
equilibrium, and, relatedly, we derive that problems of find-
ing such an equilibrium – up to an inverse exponential pre-
cision – are complete for the class CLS (Continuous Local
Search). Finally, we derive various NP-hardness results for
maximizing over the set of equilibria and for finding an equi-
librium based on evidential decision theory and generalized
double halving. Naturally, all these complexity results also
have implications for learning or dynamics that converge to
these solutions.

2 Background for Imperfect-Recall Games
2.1 Single-Player Extensive-Form Games with

Imperfect Recall
We first define single-player extensive-form games, allowing
for imperfect recall. The concepts we use in doing so are
standard; for more detail and background, see, e.g., Fuden-
berg and Tirole [1991], Nisan et al. [2007] and Piccione and
Rubinstein [1997].

Definition 1. A single-player extensive-form game with im-
perfect recall (denoted Γ), sometimes also called an extensive
decision problem with imperfect recall, consists of:

1. A rooted tree, with nodes H and where the edges are
labeled with actions. The game starts at the root node
h0 and finishes at a leaf node, also called terminal node.
The terminal nodes in H will be denoted as Z . The set
Ah refers to the set of actions available at a nonterminal
node h ∈ H \ Z .

2. A utility function u : Z → R, where u(z) represents the
payoff that the player receives from finishing the game
at terminal node z.

3. A partition H \ Z = H∗ ⊔ Hc of nonterminal nodes
into a set of the player’s decision nodes H∗ and a set of
chance nodes Hc. This partition indicates whether the
single player or exogenous stochasticity determines the
action at any given node.

4. For each chance node h ∈ Hc, a fixed distribution Pc(· |
h) over Ah according to which chance determines an
action at h.

5. A partition H∗ = ⊔I∈I∗I of the player’s decision nodes
into information sets (“info sets” for short). We require
Ah = Ah′ for any nodes h, h′ in the same info set I .

Throughout this paper, we let ℓ := |I∗| denote the num-
ber of info sets. For computational purposes, we assume that
a game Γ is represented by its game tree structure of size
Θ(|H|) (which includes the info set partition), and by a bi-
nary encoding of its chance node probabilities and its utility
payoffs. The last two shall take on rational values only.

Any node h ∈ H uniquely corresponds to a
(node,action)-history hist(h) from root h0 to h in the
game tree. Define functions d, ν, a such that the
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Figure 1: Running example of a single-player extensive-form game
with imperfect recall. It has two info sets I1 and I2, and five nonter-
minal nodes.

node history and action history from h0 to h con-
sist of the sequences

(
ν(h, 0), ν(h, 1), ... , ν(h, d(h))

)
and(

a(h, 0), a(h, 1), ... , a(h, d(h) − 1)
)

respectively. In other
words, function d : H → N0 identifies the tree depth of a
node, ν : H×N0 → H the node ancestor at a specified depth,
and a : H×N0 → ⊔h∈HAh the action ancestor at a specified
depth. In particular, for all h ∈ H, we have ν(h, 0) = h0 and
ν(h, d(h)) = h. We restrict the domain of functions ν and a
to inputs (h, k) with k ≤ d(h) and k ≤ d(h)−1 respectively,
and note that a maps (h, k) into Aν(h,k).

The depth of Γ is defined to be the maximal depth of the
leaf nodes. For notational convenience, we add a singleton
info set to Γ for each chance node in Γ. The collection of
these info sets, each consisting of a single element in Hc,
shall be denoted by Ic. For each nonterminal node h ∈ H\Z ,
let Ih ∈ I∗ ⊔ Ic denote its info set. For each info set I ∈
I∗ ⊔ Ic, let AI denote its action set.

Nodes of the same info set are assumed to be indistinguish-
able to the player during the game (even though the player is
always aware of the full game structure). There may be infor-
mation about the history of play that the player holds at some
node, and that the player forgets somewhere further down its
subtree. For instance, consider the game in Figure 1. Once
the player arrives at node h3, she cannot distinguish it from
possibly being at node h2. Thus she has already forgotten that
she has only taken one action (action C) so far. In contrast to
that, games with perfect recall have every info set reflect that
the player remembers all her earlier actions. In particular, the
player does not forget which info sets she entered in which
order in the history of play.

With imperfect recall, it could furthermore be the case that
multiple nodes of the same history (of some terminal node)
belong to the same info set, as in info set I1 in the game of
Figure 1. The inability of a player to distinguish between
two nodes on the same history is a property that we will refer
to as absentmindedness; cf. the Absentminded Driver from
Piccione and Rubinstein [1997] (Appendix C).

Let ∆(AI) denote the set of probability distributions over

the actions in AI . A (behavioural) strategy µ : I∗ →
⊔I∈I∗∆(AI) of the player assigns to each info set I a proba-
bility distribution µ(· | I) ∈ ∆(AI). At info set I , the player
will then randomly draw an action according to µ(· | I). By
abuse of notation, we extend any strategy µ of the player
to info sets Ih ∈ Ic of chance nodes h ∈ Hc by setting
µ(· | Ih) := Pc(· | h) there.

Given that the player is currently at node h̄ ∈ H \ Z and
that she plays according to strategy µ, we can calculate the
probability of reaching node h ∈ H by multiplying the prob-
abilities of the actions on the path from h̄ to h:

P(h | µ, h̄) =
d(h)−1∏
k=d(h̄)

µ
(
a(h, k) | Iν(h,k)

)
if h̄ ∈ hist(h)

and P(h | µ, h̄) = 0 otherwise. As a special case, we define
the reach probability P(h | µ) := P(h | µ, h0) of a node h ∈
H to be its reach probability from the root h0 of Γ. Naturally,
the reach probability of the root is 1.

The expected utility payoff for being at node h ∈ H \ Z
and using strategy µ from then on can be determined by
U(µ | h) :=

∑
z∈Z P(z | µ, h) · u(z). Furthermore, let

U : µ 7→ U(µ) := U(µ | h0) be the function that takes a
strategy µ of Γ and returns the expected utility payoff of the
player from following µ from the game start to termination.
U(µ) is also called the ex-ante (expected) utility of µ.

2.2 Utility as a polynomial function
Fix an ordering I1, . . . , Iℓ of the info sets in I∗ and denote
mi := |AIi | for all i ∈ [ℓ]. Moreover, fix an ordering
a1, . . . , ami

of the actions in AIi for all i ∈ [ℓ].
We can uniquely describe a strategy µ of Γ by the proba-

bility values that it assigns to each action aj at info set Ii,
for i ∈ [ℓ] and j ∈ [mi]. A strategy µ is a vector µ =

(µij)i,j ∈×ℓ
i=1 Rmi such that each subvector µi· = (µij)j

lies in the simplex ∆(AIi) ≡ ∆mi−1 := {y ∈ Rmi : yj ≥
0 ∀j ,

∑mi

j=1 yj = 1}. Therefore, the strategy space of Γ is

×ℓ
i=1 ∆(AIi) ≡×ℓ

i=1 ∆
mi−1.

The expected utility function U of a strategy µ can be fully
written out as

U(µ) =
∑
z∈Z

(
u(z) ·

d(z)−1∏
k=0

µ
(
a(z, k) | Iν(z,k)

))
.

As noted by Piccione and Rubinstein [1997], this is a poly-
nomial function in the variables (µij)i,j . Recall that at
chance nodes, the probabilities are exogenously fixed con-
stants. Thus, the degree of the polynomial function U is
upper-bounded by the maximum number of times the player
of Γ might have to take a decision in order to reach a terminal
node. Note that polynomial U can be constructed in polyno-
mial time in the encoding size of Γ.

Example 2. In the game of Figure 1, we get ℓ = 2, m1 = 3,
m2 = 2. Let the actions be ordered as (L,C,R) and
(X,Y ). Then, for any point µ ∈ R3 × R2, we have U(µ) =
5µ11µ13µ21 + µ13µ22.



We show in Appendix A that one can also reduce any mul-
tivariate polynomial p :×ℓ

i=1 Rmi → R to a single-player
extensive-form game Γ with imperfect recall such that its ex-
pected utility function satisfies U(µ) = p(µ) on×ℓ

i=1 Rmi .

2.3 (Computing) Ex-ante Optimal Strategies
Suppose we want to solve a given game Γ. From a plan-
ning perspective, one would naturally search for a strategy
that promises the highest payoff at a time before the player
enters the game.
Definition 3. We say a strategy µ∗ is ex-ante optimal for Γ if
it solves

max
µ

U(µ) s.t. µ ∈
ℓ

×
i=1

∆(AIi) . (1)

Due to Koller and Megiddo [1992], we can find an ex-ante
optimal strategy for a single-player game with perfect recall
in polynomial time. This will not be the case anymore in the
presence of imperfect recall, as we will show next.

The class ZPP contains all those decision problems that can
be solved in expected polynomial time by a randomized (Las
Vegas) algorithm. Let OPT be an optimization problem with
max and min values q̄ and q. Then, a fully polynomial-time
approximation scheme (FPTAS) for OPT computes a solution
to an instance of OPT with an objective value that is at most
ϵ · (q̄ − q) away from the optimal value. This computation
must take polynomial time in 1/ϵ and the encoding size of the
instance. For a more precise definition, see de Klerk [2008].
Proposition 4. Consider the problem that takes a game Γ
and target value t ∈ Q (encoded in binary) as inputs and
asks whether there is a strategy µ for Γ with ex-ante expected
utility U(µ) ≥ t. This problem is NP-hard. Moreover:
(1.) Unless NP = ZPP, there is no FPTAS for this prob-

lem. NP-hardness and conditional inapproximability
hold even if the game instance Γ has a tree depth of 3
and only one info set.

(2.) NP-hardness holds even if Γ has no absentmindedness,
a tree depth of 4 and the player has 2 actions per info
set.

(3.) NP-hardness holds even if Γ has no absentmindedness,
a tree depth of 3 and the player has 3 actions per info
set.

Gimbert et al. [2020] shows that this problem of deciding
whether a given target value can be achieved in Γ is in fact
∃R-complete (a complexity class described in the last para-
graph of this section).

An early NP-hardness result of that kind was given by
Koller and Megiddo [1992]. Note that finding the ex-ante op-
timal strategy of Γ is at least as hard as this NP-hard decision
problem of whether a target value can be achieved in Γ. On
the other hand, with an efficient solver of the decision version,
one can recover the optimal ex-ante utilityU∗ := maxµ U(µ)
through binary search.

A proof of Proposition 4 can be found in Appendix B. Re-
sult (1.) is based on our reduction from polynomials to games
and with the known hardness of maximizing a polynomial
function over a simplex [de Klerk, 2008]. Result (3.) reduces

from the hard problem of finding an optimal joint strategy in
multiplayer common payoff games [Chu and Halpern, 2001].
The proofs reveal that NP-hardness remains even if the en-
coding size of the chance node probabilities and utility values
are in O(|H|).

As for complexity upper bounds, consider the complex-
ity class ∃R called the existential theory of the reals [Rene-
gar, 1992; Schaefer and Stefankovic, 2017]. It consists of all
those problems that reduce to deciding whether a sentence of
the following form is true: ∃x1 . . . ∃xnF (x1, . . . xn), where
the xi are real-valued variables and where F is a quantifier-
free formula that may contain equalities and inequalities of
real polynomials. ∃R lies in between NP and PSPACE [Shor,
1990; Canny, 1988]. By Section 2.2, it is straight-forward to
see that the decision problem of Proposition 4 is contained in
∃R. As of now, it is unclear whether NP membership can be
shown; in part because easy-to-encode games may only ad-
mit ex-ante optimal strategies that take on irrational numbers
(see Appendix G). But we can decide an approximate version
of the problem in Proposition 4 in NP time; namely, when it
is allowed to incorrectly return “yes” to the problem instance
(Γ, t, ϵ) if there exists a strategy profile µ with U(µ) ≥ t− ϵ.
Here, ϵ > 0 represents an inverse-exponential precision pa-
rameter.

3 Equilibria in Imperfect-Recall Games

Proposition 4 shows a strong obstacle to finding or approxi-
mating ex-ante optimal strategies for single-player extensive-
form games with imperfect recall. In light of these limi-
tations, we will relax the space of solutions to equilibrium
strategies. This solution concept argues that, whenever the
player finds herself in an info set, she has no influence over
which actions she chooses at other info sets. Therefore, at an
equilibrium strategy µ, the player will play the best action at
each info set, assuming that she has been playing according to
µ up to the current decision point and that she will continue to
do so at future decision points. Prior work has given a detailed
description of viable equilibrium concepts in single-player
games with imperfect recall [Piccione and Rubinstein, 1997;
Briggs, 2010; Oesterheld and Conitzer, 2022]. We will con-
sider two well-motivated equilibrium concepts that have been
proposed and where an ex-ante optimal strategy also consti-
tutes an equilibrium. In games without absentmindedness,
these two equilibrium concepts coincide. In games with ab-
sentmindedness, the concepts differ in how expected utilities
are evaluated for an action a at a current info set I , given
that the player plays according to strategy µ anywhere “else”.
Computing such expected utilities requires

1. A Belief System: A method to form beliefs (i.e., a prob-
ability distribution) over being at a specific node/history
of Γ given that the player is at info set I; and

2. A Decision Theory: An understanding of how an action
choice at the current node affects the freedom to choose
an action at other nodes of the same info set.

In the sequel, let I be the player’s current info set at which
she finds herself during play while playing µ in game Γ.



3.1 Decision Theories
Causal Decision Theory (CDT) postulates that the player can
take an action α ∈ ∆(AI) at the current node without violat-
ing that the player has been playing according to µ at past ar-
rivals at I , or that she will be playing according to µ at future
arrivals at I . The intuition behind CDT is that the player’s
choice to deviate away from µ at the current node does not
cause any change in behaviour at any other node of the same
info set I .

In contrast to that, Evidential Decision Theory (EDT) pos-
tulates that if the player takes an action α ∈ ∆(AI) at the
current node, then she will have also deviated to α whenever
she arrived in I in past play, and she will be deviating to α
whenever she arrives in I again in future play. Indeed, EDT
argues that the choice to deviate to α now is evidence for the
player taking the same deviation choice in the past and future.

Denote with µI 7→α an EDT deviation, i.e., the strategy of
Γ that plays according to µ at every info set except at the info
set I ∈ I∗ where it plays according to α ∈ AI . By contrast,
a CDT deviation may result in different actions taken at the
same info set. This might not constitute a valid strategy that
the player could have picked before the game started.

Example 5. Consider the game in Figure 1 and suppose
the player enters the game with the strategy µ = (R,X).
Say, upon visiting info set I1, the player plans to deviate
from the µ-prescribed action R to the action L this one time
only. Then, CDT argues that the player will stick to her µ-
prescribed action R at the other node of I1, leading to one
of the two action histories (L,R,X) or (R,X). EDT, on the
other hand, argues that such a deviation will then happen at
both nodes of I , leading to the action histories (L,L).

3.2 Self-locating Belief Systems
Let I1st ⊆ I refer to those nodes h ∈ I that are the first
node of their history to enter info set I . Define the reach
probability and (expected) visit frequency of I under µ as
P(I | µ) :=

∑
h∈I1st P(h | µ) and Fr(I | µ) :=

∑
h∈I P(h |

µ). Note that the reach probability and the visit frequency
can only differ in games with absentmindedness, and that the
visit frequency can be greater than 1. However, we have in
general that P(I | µ) > 0 if and only if Fr(I | µ) > 0.
Finally, denote with χ : P → {0, 1} the function that takes a
Boolean property P as input and evaluate 1 if and only if P
is true.

The first belief system argues that one should focus on the
visit frequencies:

Definition 6. Let I be an info set with Fr(I | µ) > 0 under µ,
and let h ∈ H∗ be a player node. Then, Generalized Thirding
(GT) determines the probability of the player to be at h, given
that she uses µ and is currently in I , through

PGT(h | µ, I) := χ(h ∈ I) · P(h | µ)
Fr(I | µ)

.

The second belief system argues that one should rather
focus on the reach probabilities. Note that the statement
I ∩ hist(z) ̸= ∅ evaluates as true if and only if I occurs in
history hist(z) of terminal node z ∈ Z at least once.

Definition 7. Let I be an info set with P(I | µ) > 0 under µ,
and let z ∈ Z be a terminal node. Then, Generalized Double
Halving (GDH) determines the probability of the player being
on the path hist(z) to terminal node z, given that she uses µ
and is currently in I , through

PGDH( hist(z) | µ, I ) := χ(I ∩ hist(z) ̸= ∅) · P(z | µ)
P(I | µ)

.

GT and GDH were introduced as “consistency” and “z-
consistency” by [Piccione and Rubinstein, 1997].

With the current definitions, GT and GDH assign proba-
bilities to different type of events (to be at player node ver-
sus to be in the history of a terminal node). In Appendix
D, we phrase GT and GDH in each other’s language. In
the language of GDH, GT assigns the event of being in his-
tory hist(z) of a terminal node z a higher probability if the
reach probability of z under µ is higher (same as GDH) and
if hist(z) visits info set I very often (whereas GDH only cares
about I being visited at least once by hist(z)).
Example 8. Consider the game in Figure 1 again and sup-
pose the player enters the game with the strategy µ = ( 12L+
1
2R,X). Say, the player observes to be in info set I1. Then a
GT player believes to be at the node h0 in the history (R,X)
with probability 1

3 whereas a GDH player believes to be at
h0 in (R,X) with probability 1

2 . The names “Halving” and
“Thirding” originate from this contrast but for a different ex-
ample called Sleeping Beauty [Elga, 2000] (Appendix C).

3.3 Two equilibrium concepts
Any claims made in this section are proven in Appendix E.

We start with the equilibrium concept that uses Causal De-
cision Theory and Generalized Thirding. Denote with h ◦ a
the child node reached in Γ by following action a ∈ Ah from
player node h ∈ H∗. Then U(µ | h ◦ a) is the expected util-
ity the player receives from being at h, playing a now, and
playing according to µ afterwards.
Definition 9. Let the player currently be at an info set I with
Fr(I | µ) > 0, and let α ∈ ∆(AI) be a mixed action. Then,
the (CDT,GT)-expected utility of playing α now and accord-
ing to µ otherwise is

EUCDT,GT(α | µ, I) :=
∑
h∈I

PGT(h | µ, I)

·
( ∑

a∈AI

α(a) · U(µ | h ◦ a)
)
.

Note that the inner sum collapses to U(µ | h ◦ a) if the
considered mixed action α is a pure action a.
Definition 10. We say a strategy µ∗ of Γ is a (CDT,GT)-
equilibrium if for all info sets I ∈ I∗ with Fr(I | µ∗) > 0
under µ∗, we have

µ∗(· | I) ∈ argmax
α∈∆(AI)

EUCDT,GT(α | µ∗, I) .

Alternatively, we can use the easier-to-check condition that
for all info sets I ∈ I∗ with Fr(I | µ∗) > 0 and all pure
actions a ∈ AI with µ∗(a | I) > 0, we have

a ∈ argmax
a′∈AI

EUCDT,GT(a
′ | µ∗, I) . (2)



Next, we introduce the equilibrium concept that uses Evi-
dential Decision Theory and Generalized Double Halving.
Definition 11. Let the player currently be at an info set I
with P(I | µ) > 0, and let α ∈ ∆(AI) be a mixed action.
Then, the (EDT,GDH)-expected utility of playing α now and
according to µ otherwise is

EUEDT,GDH(α | µ, I) :=
∑
z∈Z

PGDH( hist(z) | µI 7→α, I ) · u(z) .

The GDH belief probabilities in Definition 11 are well-
defined due to P(I | µ) = P(I | µI 7→α).
Definition 12. We say a strategy µ∗ of Γ is a (EDT,GDH)-
equilibrium if for all info sets I ∈ I∗ with P(I | µ∗) > 0
under µ∗, we have

µ∗(· | I) ∈ argmax
α∈∆(AI)

EUEDT,GDH(α | µ∗, I) . (3)

For (EDT,GDH), it is not sufficient to only check for op-
timality of pure actions that are in the support of µ∗. For
instance, take the game in Figure 1 and suppose the player
enters the game with the strategy µ = (C,X). Say, the player
observes to be in info set I1. Then action C is optimal among
pure actions {L, C, R}. But the player would strictly benefit
from deviating to mixed action 1

2L + 1
2R.

Finally, observe that in games without absentmindedness,
the following notions coincide: CDT and EDT, GT and GDH,
and Definitions 9 and 11. In particular, both equilibrium con-
cepts coincide:
Lemma 13. In games without absentmindedness, a strat-
egy µ is a (CDT,GT)-equilibrium if and only if it is an
(EDT,GDH)-equilibrium.

3.4 Equilibria from the Ex-Ante Perspective
Recall from Section 2.2 that the (ex-ante) strategy utility
function U of Γ is a polynomial function from×ℓ

i=1 Rmi to
R. In this section, we give characterizations for (CDT,GT)-
and (EDT,GDH)-equilibria in terms of U , as presented by
Oesterheld and Conitzer [2022] and Piccione and Rubinstein
[1997]. We reprove these results in the appendix since our
setup and end goal differs slightly.

Polynomial U is continuously differentiable in µ ∈
×ℓ

i=1 Rmi . For i ∈ [ℓ] and j ∈ [mi], let ∇ij U stand for the
partial derivative in direction (i, j), that is, the linear change
of U at a point µ if you infinitesimally increase its µ(aj | Ii)
value.
Lemma 14. Let Ii be an info set, aj ∈ AIi an action, and
µ ∈×ℓ

i=1 ∆(AIi) a strategy. Then:
1. ∇ij U(µ) = 0 if Fr(Ii | µ) = 0, and
2. ∇ij U(µ) = Fr(Ii | µ) ·EUCDT,GT(aj | µ, Ii) otherwise.
Note that an infinitesimal increase of µ(aj | Ii) means in

a game-theoretic sense that the decision for action aj is made
slightly more probable at every node of info set Ii. This re-
sembles an EDT type of deviation power but restricted to
small deviations that stay close to the current action profile
µ. Then, Lemma 14 says that a CDT deviation – rescaled by
Fr(Ii | µ) – accurately captures the linear (=dominant) effect
of such a “local EDT deviation”.

Lemma 15. Strategy µ ∈ ×ℓ
i=1 ∆(AIi) of Γ is an

(EDT,GDH)-equilibrium if and only if for all i ∈ [ℓ]:
µi· ∈ argmax

y∈∆(AIi
)

U(µ1·, . . . , µi−1·, y, µi+1·, . . . , µℓ·) .

One possible interpretation of Lemma 15 is that
(EDT,GDH)-equilibria of Γ are exactly the Nash equilibria
of an ℓ-player simultaneous and identical-interest game G:
Each player i shall have the continuous action space ∆(AIi)
and the (single) utility payoff, a function of the chosen action
profile (µi·)

ℓ
i=1 ∈×ℓ

i=1 ∆(AIi), shall be the polynomial U .

3.5 Computational Considerations
One of our main results addresses the complexity of find-
ing a (CDT,GT)-equilibrium. There are problem instances
where all (CDT,GT)-equilibria take on irrational numbers
even though the game is easy to encode (Appendix G).
Therefore, we relax our search to ϵ-approximate (CDT,GT)-
equilibria where ϵ is an inverse-exponential numerical preci-
sion parameter.
Definition 16. An instance of the problem (CDT,GT)-
EQUILIBRIUM consists of a single-player extensive-form
game Γ with imperfect recall and a precision parameter ϵ > 0
encoded in binary. A solution consists of a strategy µ for Γ
that satisfies for all I ∈ I∗ with Fr(I | µ) > 0:

EUCDT,GT
(
µ(· | I) | µ, I

)
≥ max

a′∈AI

EUCDT,GT(a
′ | µ, I)− ϵ .

There is also an alternative notion of being close to an equi-
librium, called ϵ-well-supported (CDT,GT)-equilibrium. It
instead requires condition (2) to be satisfied up to ϵ preci-
sion. An analysis of when both approximation concepts are
polynomial-time related can be found in Appendix H.

We will give hardness results and restricted membership
results for (CDT,GT)-EQUILIBRIUM for the class CLS (Con-
tinuous Local Search). CLS was introduced by Daskalakis
and Papadimitriou [2011] who noted that it contains various
important problems of continuous local optimization that be-
long both to PPAD and PLS. PPAD [Papadimitriou, 1994] is
well-known as the class that captures the complexity of many
problems of Nash equilibrium computation ([Daskalakis et
al., 2009; Chen et al., 2009] and much subsequent work),
while PLS (Polynomial Local Search [Johnson et al., 1988])
represents the complexity of many problems of discrete local
optimization. Recently, Fearnley et al. [2023] showed that
CLS is equal to the intersection of PPAD and PLS, indicating
that CLS-hardness is quite a reliable notion of computational
difficulty. In addition, the hardness of CLS can also be based
on the cryptographic assumption of indistinguishability ob-
fuscation [Hubácek and Yogev, 2017]. Fearnley et al. [2023]
also showed that a version of the KKT point search prob-
lem is CLS-complete. Subsequent work has established CLS-
completeness of mixed Nash equilibria of congestion games
[Babichenko and Rubinstein, 2021] and solutions to a certain
class of contests [Elkind et al., 2022]. We can characterize
CLS through any of its complete problems.

We will mainly be interested in KKT points. Consider a
general non-linear maximization problem

max
x∈Rn

f(x) s.t. Bx+ b ≤ 0 , Cx+ c = 0 (4)



where f : Rn → R is continuously differentiable, B ∈
Rm×n, b ∈ Rm, C ∈ Rℓ×n, and c ∈ Rℓ, and the
domain is bounded. A point x ∈ Rn is then said to
be a KKT point for (4) if there exist KKT multipliers
τ1, . . . , τm, κ1, . . . , κℓ ∈ R such that Bx + b ≤ 0 and
Cx + c = 0, and ∀j ∈ [m] : τj ≥ 0, ∀j ∈ [m] : τj = 0 or
Bj·x+ bj = 0, and

∇ f(x) =

m∑
j=1

τj · (Bj·)
T +

ℓ∑
i=1

κi · (Ci·)
T = 0 .

The KKT conditions are necessary first-order conditions for
a point to be a local optimum of (4). Furthermore, feasible
stationary points satisfy the KKT conditions.

4 Main Results
To our knowledge, the results of this section are all novel un-
less explicitly stated otherwise. All proofs can be found in
Appendix H.

4.1 Complexity of the Search Problems
First, we use Lemma 14 to give a characterization of
(CDT,GT)-equilibria in terms of ex-ante utility. For that, re-
call the ex-ante maximization problem (1).

Theorem 1. Strategy µ ∈×ℓ
i=1 ∆(AIi) of Γ is a (CDT,GT)-

equilibrium if and only if µ is a KKT point of (1).
We visualize Theorem 1 in Figure 2. This result also re-

veals a method to find (CDT,GT)-equilibria, namely by ap-
plying Gradient Descent on U . Note that in continuous opti-
mization, there can be KKT points that are not locally opti-
mal. An analogous effect can also happen in games with im-
perfect recall: In the game of Figure 1, strategy µ = (C,X)
is a (CDT,GT)-equilibrium. But it is not a local optimum
because for any ϵ > 0 a shift from µ(· | I1) = C to
ϵ · ( 12L + 1

2R) + (1 − ϵ) · C would yield the player ex-ante
utility 5 · ϵ

2 · ϵ
2 > 0. However, from a (CDT,GT) standpoint,

the player should be satisfied with her choice at I1. In terms
of the original definition of CDT, this is because deviating ex-
actly once in I1 never suffices to attain a utility of 5. In terms
of Lemma 14 and Theorem 1, the issue is that the first order
effect of increasing the probabilities of R and L is 0.

The three solution concepts considered in this paper form
an inclusion hierarchy, a result shown by Oesterheld and
Conitzer [2022] [cf. Piccione and Rubinstein, 1997]:
Lemma 17. An ex-ante optimal strategy of a game Γ is also
an (EDT,GDH)-equilibrium. An (EDT,GDH)-equilibrium is
also a (CDT,GT)-equilibrium.

In particular, any single-player extensive-form game Γ
with imperfect recall admits an (EDT,GDH)-equilibrium and
a (CDT,GT)-equilibrium.

The implication chain of Lemma 17 does not hold in the
reverse direction: Consider the game in Figure 1. Then
strategy µ = (C,X) is a (CDT,GT)-equilibrium, but not an
(EDT,GDH)-equilibrium. Moreover, strategy µ′ = (R, Y )
is an (EDT,GDH)-equilibrium with ex-ante utility 1. This is
not ex-ante optimal because strategy µ′′ = ( 12L + 1

2R,X)
achieves the (optimal) ex-ante utility 5/4.
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Figure 2: A plot of the gradient vector field ∇U of the strategy util-
ity function U . The underlying game is the one from Figure 1 except
where the player nodes of info set I2 are replaced by chance nodes
that choose actions X and Y with chance probabilities 1

2
each. Then

the player only has to choose a mixed action for info set I1. The plot
is in 2D for visualization convenience: The x-axis and y-axis repre-
sent the probabilities put on action R and L respectively. The action
simplex ∆({L,C,R}) becomes a right triangle with the point (0, 0)
corresponding to pure action C. The gradient coloring represents the
vector length.
There is no KKT point in the interior of the (projected) simplex be-
cause the gradient does not vanish there. The KKT points on the
boundary of the simplex are those where the gradient is directed
perpendicularly outwards of the boundary constraint (except corner
points, whose gradient only needs to lie in the positive cone of the
boundary constraint directions). Thus (0.6 ·L+0.4 ·R) is the only
KKT point. A game-theoretic analysis of the underlying game Γ
also yields (0.6 · L+ 0.4 ·R) as the only (CDT,GT)-equilibrium.

The second part of Lemma 17 holds because ex-ante opti-
mal strategies always exist. This is in contrast to the multi-
player setting where Nash equilibria may not exist in the pres-
ence of imperfect recall. Moreover, Lemma 17 implies that
finding an ex-ante optimal strategy must be at least as hard as
finding an (EDT,GDH)-equilibrium which must be at least as
hard as finding a (CDT,GT)-equilibria. For the latter, we get
the following classification:
Theorem 2. (CDT,GT)-EQUILIBRIUM is CLS-hard. CLS-
hardness holds even for games restricted to:
(1.) a tree depth of 6 and the player has 2 actions per info

set,
(2.) no absentmindedness and a tree depth of 6, and
(3.) no chance nodes, a tree depth of 5, and only one info set.
The problem is in CLS for the subclass of problem instances of
(CDT,GT)-EQUILIBRIUM where a lower bound on positive
visit frequencies in Γ is easily obtainable.

All CLS results of Theorem 2 also hold analogously for the
search problem of an approximate well-supported (CDT,GT)-
equilibrium. We prove (1.) by a reduction from finding a
KKT point of a polynomial function over the hypercube. For
(2.) and (3.), we reduce from finding a Nash equilibrium of a
polytensor identical interest game. Both search problems we
reduce from were shown to be CLS-complete by Babichenko



and Rubinstein [2021].
The CLS membership in Theorem 2 implies that, unless

NP = co-NP, the considered problem cannot be hard for the
class NP [Megiddo and Papadimitriou, 1991]. We only prove
CLS membership for those games Γ where we can construct
a lower bound value λ > 0 that satisfies Fr(I | µ) = 0 or
Fr(I | µ) ≥ λ for all strategies µ and info sets I in Γ. That is
because if Fr(I | µ) > 0 is too small, the approximation error
may explode when transitioning from the ex-ante perspective
∇ij U(µ) to the de se perspective EUCDT,GT(aj | µ, Ii). For-
tunately, such a lower bound exists and is polynomial-time
computable for many well-known imperfect-recall games,
such as the Absentminded Driver, game variants of the Sleepy
Beauty problem, and all the games used in the CLS-hardness
results of Theorem 2. Thus, the computation of an approxi-
mate (CDT,GT)-equilibrium is CLS-complete in those games
that admit such a lower bound on positive visit frequencies.
Statement (2.) shows in particular that absentmindedness is
not the reason for CLS hardness. With Lemma 13, this im-
plies
Corollary 18. In games without absentmindedness where a
lower bound on positive visit frequencies is easily obtainable,
it is CLS-complete to find an ϵ-(EDT,GDH)-equilibrium.

The authors are not aware of any complexity classifica-
tion for the problem of finding an approximate (EDT,GDH)-
equilibrium in games that may have absentmindedness – even
though Lemma 15 gives a nice optimization characteriza-
tion of (EDT,GDH)-equilibria. Nonetheless, we are able to
give conditional inapproximability results for (EDT,GDH)-
equilibria with the next theorem.

4.2 Complexity of the Decision Problems
Next, we show that maximizing expected utility in an info set
or maximizing over the space of equilibria is NP-hard. In the
following problem formulations, any target value t ∈ Q shall
be encoded in binary.
Theorem 3. The following problems are all NP-hard. Unless
NP = ZPP, there is also no FPTAS for these problems.

(1a.) Given Γ and t ∈ Q, is there a (CDT,GT)-equilibrium of
Γ with ex-ante utility ≥ t?

(1b.) Given Γ, an info set I of Γ and t ∈ Q, is there a
(CDT,GT)-equilibrium µ with Fr(I | µ) > 0, and such
that the player has a (CDT,GT)-expected utility ≥ t upon
reaching I?

(1c.) Given Γ, an info set I of Γ and t ∈ Q, is there a strategy
µ of Γ with Fr(I | µ) > 0, and such that the player has
a (CDT,GT)-expected utility ≥ t upon reaching I?

(2a.) Given Γ and t ∈ Q, is there an (EDT,GDH)-equilibrium
of Γ with ex-ante utility ≥ t?

(2b.) Given Γ, an info set I of Γ and t ∈ Q, is there an
(EDT,GDH)-equilibrium µ with P(I | µ) > 0, and such
that the player has an (EDT,GDH)-expected utility ≥ t
upon reaching I?

(2c.) Given Γ, an info set I of Γ and t ∈ Q, is there a strategy
µ of Γ with P(I | µ) > 0, and such that the player has
an (EDT,GDH)-expected utility ≥ t upon reaching I?

(3a.) Given Γ and t ∈ Q, do all (EDT,GDH)-equilibria of Γ
have ex-ante utility ≥ t?

(3b.) Given Γ, an info set I of Γ and t ∈ Q, do all
(EDT,GDH)-equilibria µ with P(I | µ) > 0 yield the
player an (EDT,GDH)-expected utility ≥ t upon reach-
ing I?

All the results of Theorem 3 follow from Proposition 4.
Therefore, NP-hardness and conditional inapproximability
remain for problems of the form (-a.) even if we restrict the
game instances as described in Proposition 4. The same holds
for problems of the form (-b.) and (-c.) except that we have to
add one information set and one tree depth level to the game
instances. Hardness of decision problem (3a.) also relies on
the observation that in games with one info set only, any
(EDT,GDH)-equilibrium is also ex-ante optimal (cf. Lemma
15).

From (3a.) we obtain in particular that, unless NP = ZPP,
there is no FPTAS for the search problem of an (EDT,GDH)-
equilibrium in games with imperfect recall1. To compare this
to Theorem 2, we remark that this conditional inapproxima-
bility result for (EDT,GDH)-equilibria (and ex-ante optimal
strategies) is obtained even for games where a lower bound
on positive visit frequencies is easily obtainable.

The decision problems of the form (1-.), (2a.), and (2c.) are
all members of the complexity class ∃R, and therefore, in par-
ticular, in PSPACE. On one hand, this is because (CDT,GT)-
expected utilities and (EDT,GDH)-expected utilities can be
described as rational functions (fractions of polynomial func-
tions). Furthermore, this is because the alternative defini-
tion (2) of a (CDT,GT)-equilibrium gives rise to polynomi-
ally many comparisons of polynomial functions, and, for
(2a.), because ex-ante optimal strategies are (EDT,GDH)-
equilibria.

5 Conclusion
Games of imperfect recall have traditionally often been con-
sidered a theoretical curiosity; it is hard to model settings
with human actors as imperfect-recall games, because, while
most of us frequently forget things, we do not reliably for-
get things according to well-specified rules. For AI agents,
however, this is no longer true; moreover, because they can
be instantiated many times, sometimes in simulation, one in-
stantiation will generally not know what another knew earlier.
All this motivates the computational study of games of imper-
fect recall, which we initiated here for the single-player case.
We are aided in this endeavor by recent conceptual work that
specifies and motivates several natural solution concepts, and
we based our work on these. Standard polynomial-time algo-
rithms such as ones based on the sequence form are known to
no longer work in the presence of imperfect recall. In this pa-
per we found various complexity-theoretic evidence that in-
deed, single-player imperfect-recall games are hard to solve.
Some of this evidence is, intriguingly, based on the com-
plexity class CLS whose careful study is only very recent.
On the positive side, we also provided insights into solving
such games by drawing close connections to several problems
about maximizing polynomial functions.

1Note that FPTAS even allow for an approximation up to an
inverse-polynomial precision ϵ.



There remain many avenues for future work. What can
be said about these computational problems for representa-
tion schemes other than the extensive form? Are there spe-
cial cases of imperfect-recall games that can be solved more
efficiently, whether they are single-player or multi-player?
One may also ask whether our results give insight into the
more conceptual questions. For example, to the extent that
(CDT,GT)-equilibria are (under reasonable complexity as-
sumptions) easier to compute than (EDT,GDH)-equilibria,
does that provide support for using the former solution con-
cept, at least for certain purposes? We hope that the work we
have done in this paper can serve as a springboard for further
research into this fascinating and important topic.
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Tamar Szabó Gendler and John Hawthorne, editor, Oxford
Studies in Epistemology: Volume 3, pages 3–34. Oxford
University Press, 2010.

[Camerer, 2003] Colin F. Camerer. Behavioral Game The-
ory: Experiments in Strategic Interaction. Princeton Uni-
versity Press, 2003.

[Canny, 1988] John Canny. Some algebraic and geometric
computations in pspace. In Proceedings of the Twentieth
Annual ACM Symposium on Theory of Computing, STOC
’88, page 460–467, New York, NY, USA, 1988. Associa-
tion for Computing Machinery.

[Chen et al., 2006] Xi Chen, Xiaotie Deng, and Shang-hua
Teng. Computing nash equilibria: Approximation and
smoothed complexity. In 2006 47th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’06),
pages 603–612, 2006.

[Chen et al., 2009] Xi Chen, Xiaotie Deng, and Shang-Hua
Teng. Settling the complexity of computing two-player
Nash equilibria. J. ACM, 56(3):14:1–14:57, 2009.

[Chu and Halpern, 2001] Francis C. Chu and Joseph Y.
Halpern. On the np-completeness of finding an optimal
strategy in games with common payoffs. Int. J. Game The-
ory, 30(1):99–106, 2001.

[Conitzer and Oesterheld, 2023] Conitzer and Oesterheld.
Foundations of cooperative ai. In Thirty-Seventh AAAI

Conference on Artificial Intelligence, AAAI 2023, Febru-
ary 7 - 14, 2022. AAAI Press, 2023.

[Conitzer, 2015] Vincent Conitzer. A Dutch book against
sleeping beauties who are evidential decision theorists.
Synthese, 192(9):2887–2899, 2015.

[Daskalakis and Papadimitriou, 2011] Constantinos
Daskalakis and Christos Papadimitriou. Continuous
local search. In Proceedings of the Twenty-Second Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA
’11, page 790–804, USA, 2011. Society for Industrial and
Applied Mathematics.

[Daskalakis et al., 2009] Constantinos Daskalakis, Paul W.
Goldberg, and Christos H. Papadimitriou. The complex-
ity of computing a Nash equilibrium. SIAM J. Comput.,
39(1):195–259, 2009.

[de Klerk, 2008] Etienne de Klerk. The complexity of opti-
mizing over a simplex, hypercube or sphere: a short sur-
vey. Central Eur. J. Oper. Res., 16(2):111–125, 2008.

[Draper and Pust, 2008] Kai Draper and Joel Pust. Di-
achronic Dutch Books and Sleeping Beauty. Synthese,
164(2):281–287, 2008.

[Elga, 2000] Adam Elga. Self-locating belief and the Sleep-
ing Beauty problem. Analysis, 60(2):143–147, 2000.

[Elkind et al., 2022] Edith Elkind, Abheek Ghosh, and
Paul W. Goldberg. Simultaneous contests with equal shar-
ing allocation of prizes: Computational complexity and
price of anarchy. In Algorithmic Game Theory - 15th
International Symposium, SAGT, volume 13584 of Lec-
ture Notes in Computer Science, pages 133–150. Springer,
2022.

[Fearnley et al., 2021] John Fearnley, Paul W. Goldberg,
Alexandros Hollender, and Rahul Savani. The complex-
ity of gradient descent: CLS = PPAD ∩ PLS. In Samir
Khuller and Virginia Vassilevska Williams, editors, STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, Virtual Event, Italy, June 21-25, 2021, pages
46–59. ACM, 2021.

[Fearnley et al., 2023] John Fearnley, Paul Goldberg,
Alexandros Hollender, and Rahul Savani. The complexity
of gradient descent: CLS = PPAD ∩ PLS. J. ACM,
70(1):7:1–7:74, 2023.

[Fudenberg and Tirole, 1991] Drew Fudenberg and Jean Ti-
role. Game Theory. MIT Press, October 1991.

[Gimbert et al., 2020] Hugo Gimbert, Soumyajit Paul, and
B. Srivathsan. A bridge between polynomial optimization
and games with imperfect recall. In Proceedings of the
19th International Conference on Autonomous Agents and
MultiAgent Systems, AAMAS ’20, page 456–464, Rich-
land, SC, 2020. International Foundation for Autonomous
Agents and Multiagent Systems.
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A On Section 2.2: Reductions from
Polynomial Maximization to Games

We consider problems of optimizing polynomials p :

×ℓ
i=1 Rmi → R, where each subset of mi variables are con-

strained to lie in the standard (mi − 1)-simplex.
At the end of Section 2.2, we mention that we can reduce a

polynomial p :×ℓ
i=1 Rmi → R to a single-player extensive-

form game Γ with imperfect recall such that p = UΓ on
×ℓ

i=1 Rmi . Let us show this by giving two variants of the
same reduction idea.

A general polynomial function p : ×ℓ
i=1 Rmi → R of

degree d can be uniquely represented in terms of the stan-
dard monomial basis

{∏ℓ,mi

i,j=1 x
Dij

ij

}
D∈MB(d,m)

. Here, we

summarized (mi)
ℓ
i=1 to the vector m, and we denote with

MB(d,m) the set

{D = (Dij)ij ∈
ℓ

×
i=1

Nmi
0 :

ℓ,mi∑
i,j=1

Dij ≤ d}

of all variations to draw up to d ∈ N elements out of the set
{(i, j)}ℓ,mi

i,j=1, with replacement and without regard to draw
order. Each element D ∈ MB(d,m) captures the variable
degrees of the monomial basis element

∏ℓ,mi

i,j=1 x
Dij

ij that it
represents.

Throughout this paper (specifically, this appendix), if the
instance to a problem contains a polynomial function p :

×ℓ
i=1 Rmi → R, then we assume it to be represented as a

binary encoding of ℓ, (mi)
ℓ
i=1, and the polynomials coeffi-

cients (λD)D∈MB(d,m), which need to be rational. This is
also called the Turing (bit) model. Denote supp(p) := {D ∈
MB(d,m) : λD ̸= 0}) and, for each D ∈ MB(d,m),
supp(D) := {(i, j) with i ∈ [ℓ], j ∈ [mi] : Dij > 0})
as well as |D| :=

∑ℓ,mi

i,j=1Dij . Let supp(D)ms be the mul-
tiset that contains Dij many copies of the element (i, j) in it
for each (i, j) ∈ supp(D) (in multisets, duplicate elements
are allowed). Then | supp(D)ms| = |D|.

Given such a polynomial function, let us construct a cor-
responding single-player extensive-form game Γ with imper-
fect recall. It shall have info sets Ii for i ∈ [ℓ] with action sets
AIi := {a1, . . . , ami

}, and a tree depth of up to d+1. Let the
root h0 be a chance node that has one outgoing edge to depth
1-node hD for each monomial index D ∈ supp(p). An out-
going edge is drawn uniformly at random. First, handle the
special case of D being the zero vector. There, hD will be a
terminal node with a utility payoff of | supp(p)|. So consider
D ̸= 0 from now on, where hD will be a nonterminal node.
Denote the subtree rooted at hD with TD. Keep in mind that it
is associated with monomial

∏ℓ,mi

i,j=1 x
Dij

ij . We will now build
TD depth layer by depth layer, until a tree of depth |D|, by
lexicographically going through the set supp(D)ms. Depth
k − 1 of TD corresponds to the k-th element of supp(D)ms,
referred to as

(
i(k), j(k)

)
. We present two variants with how

to continue building Γ:
Variant 1: There will be at most one nonterminal node

h of depth k − 1 of TD (it would be hD on depth 0). As-
sign h to info set Ii(k). Create mi(k) outgoing edges out

of h into a new node of depth k, and the edges shall be
labeled with {a1, . . . , ami(k)

} of AIi(k)
. The created node

h ◦ aj(k) shall be non-terminal and the created nodes h ◦ aj
for j ̸= j(k) shall be terminal with utility payoff 0. With this
procedure, subtree TD will have depth

∑
(i,j)∈supp(D)Dij .

The nonterminal node of the last depth layer has action his-
tory

(
aj(k) ∈ AIi(k)

)
k∈[|D|] in TD. Now reverse the fact that

it is nonterminal, and make it terminal instead. Denote it as
zD and assign it a utility of λD · | supp(p)|.

Variant 2: This variant does not have terminal nodes in
depth layers 0, . . . , |D| − 1. Each node h of depth k − 1 of
TD shall belong to info set Ii(k) (Depth 0 only has one node,
namely hD). Create mi(k) outgoing edges out of each h
into a new node of depth k. The edges shall be labeled with
{a1, . . . , ami(k)

} of ∈ AIi(k)
. The nodes of the last depth

layer (depth |D|) shall be terminal nodes. One of those nodes
has the action history

(
aj(k) ∈ AIi(k)

)
k∈[|D|] in TD, which

we will refer to as zD. Assign it a utility of λD · | supp(p)|.
Assign all other terminal nodes of TD a utility of 0.

In both variants, we have that any point x ∈×ℓ
i=1 Rmi of

p that is also in×ℓ
i=1 ∆

mi−1 naturally comprises a strategy
µ in Γ with probabilities µ(aj | Ii) = xij . Moreover, the
strategy utility function U of both variants of Γ satisfies

U(µ) =
∑
z∈Z

P(z | µ) · u(z) =

=
∑

D∈supp(p)

P(zD | µ) · λD · | supp(p)|

=
∑

D∈supp(p)

[( 1

| supp(p)|
·
∏

Dij>0

x
Dij

ij

)
· λD · | supp(p)|

]
=

∑
D∈MB(d,m)

λD ·
∏
i,j

x
Dij

ij

= p(x)

for corresponding x and µ. This extends to U = p on all
×ℓ

i=1 Rmi .
The construction of the first variant of Γ takes polynomial

time in the encoding size of p :×ℓ
i=1 Rmi → R. That is, be-

cause the game tree has size ≤ | supp(p)|·deg(p)·(maximi).
The second variant of Γ can have exponential game tree
size in general. But, if we know that polynomial instances
p have fixed degree d for example, then the tree size is
≤ | supp(p)| · (maximi)

d which makes the whole construc-
tion of Γ polynomial time in the size of the input instances
again. An advantage of the second variant is that in that game,
the reach probability P(I | µ) and visit frequency Fr(I | µ) of
an info set I ∈ I are independent of the used strategy µ. That
is because a subtree TD is chosen by nature at the beginning,
and within TD, any outcome path visits the exact same info
sets with the same multiplicity. The reach probability of info
set Ii becomes

P(Ii) = P(Ii | µ) =
∑

D∈supp(p)

1

| supp(p)|
·χ(

∑
j∈[mi]

Dij ≥ 1)



and its visit frequency becomes

Fr(Ii) = Fr(Ii | µ) =
∑

D∈supp(p)

1

| supp(p)|
·
∑

j∈[mi]

Dij .

(5)

We will make use of this observation later when it comes to
games that admit an easy-to-compute lower bound on positive
visit frequencies.

B On Section 2.3: Proof of Proposition 4
We recall and prove Proposition 4:

Proposition. Consider the problem that takes a game Γ and
target value t ∈ Q (encoded in binary) as inputs and asks
whether there is a strategy µ for Γ with ex-ante expected util-
ity U(µ) ≥ t. This problem is NP-hard. Moreover:
(1.) Unless NP = ZPP, there is no FPTAS for this prob-

lem. NP-hardness and conditional inapproximability
hold even if the game instance Γ has a tree depth of 3
and only one info set.

(2.) NP-hardness holds even if Γ has no absentmindedness,
a tree depth of 4 and the player has 2 actions per info
set.

(3.) NP-hardness holds even if Γ has no absentmindedness,
a tree depth of 3 and the player has 3 actions per info
set.

Proof. (1.)
Appendix A gives a reduction from maximizing polynomial
p :×ℓ

i=1 Rmi → R over the product of simplices to maxi-
mizing ex-ante utility in a single-player extensive-form game
Γ with imperfect recall (take the first variant of the reduc-
tion). de Klerk [2008] gives a survey on maximizing poly-
nomials over popular compact domains. Consider the deci-
sion problem that takes as an instance a polynomial function
p : ∆m−1 → R and a target value t ∈ Q, and that has to
decide whether there exists a point x ∈ ∆m−1 with p(x) ≥ t.
de Klerk [2008] note that this problem is NP-hard and has
no FPTAS unless NP=ZPP, even if p is known to be quadratic
functions only. They derive the conditional inapproximability
from Håstad [1996]. In terms of our reduction, such polyno-
mials reduce to a game of depth 3 and one info set. Moreover,
a instance of the polynomial problem is a yes instance if and
only if the reduced instance of ex-ante utility game problem
of this proposition is a yes instance.

(2.)
Reduce from 3SAT. Let x1, . . . , xℓ be the variables of a 3CNF
formula ϕ having n clauses. We construct the corresponding
game instance Γ as follows. Each variable xi has correspond-
ing info set Ii whose nodes have 2 outgoing edges with action
labels T, F . The root of the tree is a chance node that selects
amongst n subtrees, corresponding to the clauses, with equal
probability 1/n. Each subtree is a binary tree of depth 3. If
the clause C associated with the subtree contains variables
xi, xj , xk, then the root node of the subtree shall belong to
info set Ii, its two children belong to info set Ij , and their
four children belong to info set Ik. Each leaf has a path that
is associated by truth assignments of xi, xj , xj . A leaf shall

yield a utility of 1 if the associated truth assignment satisfies
the clause C, else value 0. The utility target value for the
game instance shall be 1.

Then, ϕ is satisfiable if and only if there is a strategy in the
corresponding game with ex-ante utility 1. Note that every
clause subtree is reached with positive probability and that an
ex-ante utility of 1 means that any realization of the candi-
date strategy must only reach terminal node with utility pay-
off 1. For the backward implication, say µ is a behavioural
(=randomizing) strategy with an ex-ante utility of 1. Take any
pure-action strategy µ′ that only uses actions that are in the
support of µ. Then µ′ makes a satisfying truth assignment for
ϕ.

(3.)
Consider the following type of 2-player games G: A game G
consists of a family (Gs)s∈S of 2-player simultaneous games
where |S| ∈ N is finite. There is a probability distribu-
tion over S determining which game the two players will
play. There is a partition S = ⊔I∈I∗I for player 1 and
S = ⊔J∈J∗J for player 2 representing the info sets of each
player within which the respective player cannot differentiate.
For any I ∈ I∗, games Gs with s ∈ I have the same action
set AI for player 1. Analogously, for any J ∈ J∗, games Gs

with s ∈ J have the same action set AJ for player 2. First,
nature draws s ∈ S according to the probability distribution,
then each player simultaneously takes an action in Gs. Such
an outcome (s, a ∈ AIs , a

′ ∈ AJs
) yields each player the

same payoff u(s, a, a′). A strategy for player 1 (resp. player
2) returns a mixed action α ∈ ∆(AI) to each set I ∈ I∗
(resp. an α ∈ ∆(AJ) to each set J ∈ J∗.

Chu and Halpern [2001] show that given a game G as de-
scribed above, it is NP-hard to decide whether there is a strat-
egy profile (µ1, µ2) that yields a payoff ≥ 1 in G. After a
closer inspection of their reduction from 3SAT, we can see
that their NP-hardness result holds even for game instances
where each player only has up to three actions in eachGs and
where all the payoffs are as simple as 0 or 3. They also show
that such a gameG can be transformed into an extensive-form
game in polynomial time. We will use almost the same trans-
formation in our upcoming reduction from their problem to
our problem of interest.

Take an instance G as described above. Assume further
that G has up to three actions in each Gs. Create a single-
player extensive-form game Γ with imperfect recall in the
following way: Γ has depth 3 and information sets I∗ ∪ J∗.
The root of Γ is a chance node that chooses a subtree Ts as-
sociated with s ∈ S according to the given probability dis-
tribution over S. The root of a subtree Ts shall be assigned
to info set Is ∈ I∗ and it shall have AIs outgoing edges.
Each node of subtree Ts of subtree depth level 1 shall be as-
signed to info set Js ∈ J∗ and they shall have AJs

outgo-
ing edges. Each node of the whole game Γ of depth level 3
shall be a terminal node, and if its associated action history is
(s, a ∈ AIs , a

′ ∈ AJs
), then it shall yield the single player a

payoff of u(s, a, a′). Also, let the target value t for Γ be 1. A
strategy (µ1, µ2) of G shall correspond to the strategy µ of Γ
that returns µ1(I) ∈ ∆(AI) for info sets I ∈ I∗ ⊂ I∗ ∪ J∗
and returns µ1(J) ∈ ∆(AJ) for info sets J ∈ J∗ ⊂ I∗ ∪ J∗

Then, there is a strategy profile (µ1, µ2) of G that yields
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Figure 3: Absentminded driver game. The driver reaches his desti-
nation by taking the second of two exits from the road he is driving
on. Unfortunately, when approaching an exit, he forgets whether he
has passed another exit before. Any pure strategy yields payoff 0.
His best strategy is to exit with probability 1

2
which gives him a pay-

off of 1
4

.

a payoff ≥ 1 if and only if its corresponding strategy µ in Γ
yields an ex-ante utility ≥ t.

Note that in this reduction, Γ has no absentmindedness, a
tree of depth 3, and at most three actions for each player info
set.

C Popular Game Examples of Imperfect
Recall

In Figure 3, we describe the Absentminded Driver game. In
Figure 4, we describe the Sleeping Beauty problem, which is
less of a decision problem, but rather a probability puzzle.

D On Section 3.2: Comparing Generalized
Thirding and Generalized Double Halving

This section stays close to the exposition of Oesterheld and
Conitzer [2022].

Let Γ be a single-player extensive-form game with imper-
fect recall, µ be the strategy with which the player entered the
game, and let the player find herself at an info set I ∈ I∗ with
P(I | µ) > 0 ⇐⇒ Fr(I | µ) > 0.

Recall that then, GT determines the probability of being at
player node h ∈ H∗ specifically as

PGT(h | µ, I) = χ(h ∈ I) · P(h | µ)
Fr(I | µ)

.

The number of times info set I occurs in the history of a ter-
minal node z can be described with |I ∩ hist(z)|. Let “at h in
hist(z)” be the event that the player is currently at node h and
on the root-to-end path hist(z) for some given terminal node
z. Then we get the following GT probabilities for being in

•
h0

•
h1 •

h2

•h3

• •

I

0 0

1
2

1
2

Figure 4: Sleeping Beauty. In the beginning, a coin is flipped in
secret from the game participant, the sleeping beauty. Next, she is
put to sleep, and woken up. If the coin flip turned out heads, the
game ends. If the coin flip turned out tails, she will be put to sleep
again, and woken up again, after which the game ends. At any point
she wakes up, she forgot whether she has been awake before. When
woken up (= arriving in I), what should her belief probabilities be
on the coin flip having turned out heads (= her being in h1)? Gener-
alized Thirding argues it should be 1

3
whereas Generalized Double

Halving argues it should be 1
2

.

the history hist(z) of a specified terminal node z ∈ Z:

PGT( hist(z) | µ, I ) =
∑
h∈H∗

PGT( ath in hist(z) | µ, I )

:=
∑

h∈H∗∩hist(z)

PGT(h | µ, I ) · P(z | µ, h)

=
∑

h∈I∩hist(z)

P(h | µ)
Fr(I | µ)

· P(z | µ, h)

= |I ∩ hist(z)| · P(z | µ)
Fr(I | µ)

Compare this to the definition of GDH:

PGDH( hist(z) | µ, I ) = χ(I ∩ hist(z) ̸= ∅) · P(z | µ)
P(I | µ)

So GT assigns a history hist(z) of a terminal node z a higher
probability if the reach probability of z under µ is higher
(same as GDH) and if hist(z) visits info set I very often
(GDH only cares about I being visited at least once).

As we can see, GT assigns being in the history of a terminal
node z a higher probability if the reach probability P(z | µ)
under µ is higher and/or if the history hist(z) enters info set I
very often.

When it comes to events of the form “at h in hist(z)”, then
GDH will just uniformly distribute the probability of being
in hist(z) among all those nodes in hist(z) that are also in I .
With this, GDH can also assign probabilities to the event of



being at a specified node h ∈ H∗, namely, as

PGDH(h | µ, I )

=
∑
z∈Z

PGDH( ath in hist(z) | µ, I )

=
∑
z∈Z

h∈I∩hist(z)

PGDH( ath in hist(z) | µ, I )

:=
∑
z∈Z

h∈I∩hist(z)

PGDH( hist(z) | µ, I )
|I ∩ hist(z)|

= χ(h ∈ I) ·
∑
z∈Z

h∈hist(z)

P(z | µ)
P(I | µ)

· 1

|I ∩ hist(z)|

= χ(h ∈ I) ·
∑
z∈Z

h∈hist(z)

P(h | µ) · P(z | µ, h)
P(I | µ) · |I ∩ hist(z)|

= χ(h ∈ I) · P(h | µ)
P(I | µ)

·
∑
z∈Z

h∈hist(z)

P(z | µ, h)
|I ∩ hist(z)|

E On Section 3.3: Proofs

This section stays close to the ideas of Oesterheld and
Conitzer [2022].

Mixed vs Pure Action Deviations in (CDT,GT). We have

EUCDT,GT(α | µ, I)

=
∑
h∈I

PGT(h | µ, I) ·
( ∑

a∈AI

α(a) · U(µ | h ◦ a)
)

=
∑
a∈AI

α(a) ·
(∑

h∈I

PGT(h | µ, I) · U(µ | h ◦ a)
)

=
∑
a∈AI

α(a) · EUCDT,GT(a | µ, I) .

(6)

Therefore, α∗ ∈ argmaxα∈∆(AI) EUCDT,GT(α | µ, I) if and
only if it mixes only over optimal pure actions, i.e., α∗(a∗) >
0 =⇒ a∗ ∈ argmaxa∈AI

EUCDT,GT(a | µ, I).

EDT Deviation does not affect Reach Probabilities. Ob-
serve that a node h ∈ I1st in Γ satisfies P(h | µ) = P(h |
µI 7→α) because info set I - in which µ and µI 7→α differ -
never appeared in the history of h. Therefore,

P(I | µ) =
∑
h∈I1st

P(h | µ) =
∑
h∈I1st

P(h | µI 7→α)

= P(I | µI 7→α) .

(7)

Proof of Lemma 13: Without absentmindedness,
(CDT,GT) equals (EDT,GDH). First, we shall show two
facts that hold in games with imperfect recall (with or without
absentmindedness). For any strategy µ′ of Γ, node h ∈ H\Z ,

and terminal node z ∈ Z , we have

P(z | µ′, h)

= χ(h ∈ hist(z)) ·
d(z)−1∏
k=d(h)

µ′(a(z, k) | Iν(z,k))
= χ(h ∈ hist(z)) · µ′(a(z, d(h)) | Iν(z,d(h)))·

d(z)−1∏
k=d(h)+1

µ′(a(z, k) | Iν(z,k))
=

∑
a′∈AIh

χ(h ∈ hist(z)) · χ
(
a′ = a(z, d(h))

)
· µ′(a′ | Ih)·

d(z)−1∏
k=d(h)+1

µ′(a(z, k) | Iν(z,k))
=

∑
a′∈AIh

µ′(a′ | Ih) · χ(h ◦ a′ ∈ hist(z))·

d(z)−1∏
k=d(h◦a)

µ′(a(z, k) | Iν(z,k))
=

∑
a′∈AIh

µ′(a′ | Ih) · P(z | µ′, h ◦ a′) .

Moreover, we can obtain

U(µ′ | h) =
∑
z∈Z

P(z | µ′, h) · u(z)

=
∑
z∈Z

∑
a′∈AIh

µ′(a′ | Ih) · P(z | µ′, h ◦ a′) · u(z)

=
∑

a′∈AIh

µ′(a′ | Ih) ·∑
z∈Z

P(z | µ′, h ◦ a′) · u(z)

=
∑

a′∈AIh

µ′(a′ | Ih) · U(µ′ | h ◦ a′) .

Now let Γ be a single-player extensive-form game with im-
perfect recall and without absentmindedness. Let µ be the
strategy with which the player entered the game, and let the
player find herself at info set I ∈ I∗ with P(I | µ) > 0 ⇐⇒
Fr(I | µ) > 0.

CDT and EDT address how a players choices at the current
node affect the players choice at other nodes of the same path
and of the same info set I . Without absentmindedness, this
consideration becomes obsolete because for any root-to-end
path in Γ, the player can arrive in I at most once on that path.
Thus, EDT deviations and CDT deviations have the same ef-
fect.

Moreover, that lack of absentmindedness means I1st = I .
Hence, P(I | µ) = Fr(I | µ) and χ(I ∩ hist(z) ̸= ∅) =
|I ∩ hist(z)| for any terminal node z ∈ Z . Therefore, by



Appendix D, we have for any terminal node z:

PGT( hist(z) | µ, I ) = |I ∩ hist(z)| · P(z | µ)
Fr(I | µ)

= χ(I ∩ hist(z) ̸= ∅) · P(z | µ)
P(I | µ)

= PGDH( hist(z) | µ, I )

and for any node h ∈ H∗:

PGDH(h | µ, I )

= χ(h ∈ I) · P(h | µ)
P(I | µ)

·
∑
z∈Z

h∈hist(z)

P(z | µ, h)
|I ∩ hist(z)|

= χ(h ∈ I) · P(h | µ)
Fr(I | µ)

·
∑
z∈Z

h∈hist(z)

P(z | µ, h)

= χ(h ∈ I) · P(h | µ)
Fr(I | µ)

· 1

= PGT(h | µ, I )

Finally, we show that (CDT,GT) equals (EDT,GDH) com-
pute the same expected utilities from a deviation to a mixed
action α ∈ ∆(AI). Since I1st = I , we have P(h | µ) = P(h |
µI 7→α) for all h ∈ I . With the general facts showed in the be-
ginning, we can derive for games without absentmindedness:

EUCDT,GT(α | µ, I)

=
∑
h∈I

PGT(h | µ, I) ·
( ∑

a∈AI

α(a) · U(µ | h ◦ a)
)

=
∑
h∈I

χ(h ∈ I) · P(h | µ)
Fr(I | µ)

·
∑
a∈AI

α(a) · U(µ | h ◦ a)

=
∑
h∈I

1 · P(h | µ)
P(I | µ)

·
∑
a∈AI

µI 7→α(a | I) · U(µI 7→α | h ◦ a)

=
∑
h∈I

P(h | µI 7→α)

P(I | µI 7→α)
· U(µI 7→α | h)

=
∑
h∈I

P(h | µI 7→α)

P(I | µI 7→α)
·∑

z∈Z
P(z | µI 7→α, h) · χ(h ∈ hist(z)) · u(z)

=
∑
z∈Z

u(z) ·
∑

h∈I∩hist(z)

P(h | µI 7→α)

P(I | µI 7→α)
· P(z | µI 7→α, h)

=
∑
z∈Z

u(z) ·
∑

h∈I∩hist(z)

P(z | µI 7→α)

P(I | µI 7→α)

=
∑
z∈Z

u(z) · |I ∩ hist(z)| · P(z | µI 7→α)

P(I | µI 7→α)

=
∑
z∈Z

u(z) · χ(I ∩ hist(z) ̸= ∅) · P(z | µI 7→α)

P(I | µI 7→α)

=
∑
z∈Z

u(z) · PGDH( hist(z) | µI 7→α, I )

= EUEDT,GDH(α | µ, I)

As a consequence, we get Lemma 13:

Lemma. In games without absentmindedness, a strategy µ is
a (CDT,GT)-equilibrium if and only if it is an (EDT,GDH)-
equilibrium.

F On Section 3.4: Proofs
The proofs of this section stay conceptually close to Piccione
and Rubinstein [1997] and Oesterheld and Conitzer [2022].

F.1 Proof of Lemma 14
We identified the strategy space×ℓ

i=1 ∆(AIi) of a game Γ

with ×ℓ
i=1 ∆

mi−1 and established that the strategy utility
function U extends to all×ℓ

i=1 Rmi . In order to discuss dif-
ferentiabity, we view elements µ ∈ ×ℓ

i=1 Rmi as flattened
vectors in R

∑ℓ
i=1 mi . However, for notational convenience,

we keep the vector description µ = (µij)
ℓ,mi

i,j=1 ∈×ℓ
i=1 Rmi

because it is indexed by a (info set, action)-pair for our game-
theoretic perspective. Therefore, the basis vectors that span
×ℓ

i=1 Rmi are the vectors eij , for i ∈ [ℓ] and j ∈ [mi], with
(i′, j′) entries

(eij)i′j′ :=

{
1 if i′ = i and j′ = j

0 otherwise.

Then, polynomial U has one partial derivative ∇ij U for
each coordinate direction eij which is defined as

∇ij U(µ) := lim
ϵ→0

1

ϵ
·
(
U(µ+ ϵ · eij)− U(µ)

)
. (8)

We are ready to prove Lemma 14.

Lemma. Let Ii be an info set, aj ∈ AIi an action, and µ ∈
×ℓ

i=1 ∆(AIi) a strategy of the game. Then:
1. ∇ij U(µ) = 0 if Fr(Ii | µ) = 0, and
2. ∇ij U(µ) = Fr(Ii | µ) ·EUCDT,GT(aj | µ, Ii) otherwise.

Proof. Using (8), let us first get an expression for U(µ + ϵ ·
eij). By Section 2.2, we have

U(µ+ ϵ · eij)

=
∑
z∈Z

u(z)· (9)

d(z)−1∏
k=0

(
µ
(
a(z, k) | Iν(z,k)

)
+ ϵ · eij

(
a(z, k) | Iν(z,k)

))
where we use eij

(
a(z, k) | Iν(z,k)

)
to indicate the entry of

coordinate direction eij at the info set index of Iν(z,k) and the



action index of a(z, k). We continue the equation chain of (9)
by sorting the product of sums by their order in ϵ:

=
∑
z∈Z

(
u(z)

d(z)−1∏
k=0

µ
(
a(z, k) | Iν(z,k)

))
+

∑
z∈Z

(
u(z)

∑
h∈hist(z)

[
ϵ · eij

(
a(z, d(h)) | Ih

)
·

d(z)−1∏
k=0

k ̸=d(h)

µ
(
a(z, k) | Iν(z,k)

)])
+O(ϵ2)

= U(µ) + ϵ ·
∑
z∈Z

[
u(z) ·

∑
h∈hist(z)

eij

(
a(z, d(h)) | Ih

)
·

P(h | µ) · P
(
z | µ, h ◦ a(z, d(h))

)]
+O(ϵ2)

(∗)
= U(µ) +O(ϵ2)+

ϵ ·
∑
z∈Z

∑
h∈hist(z)∩Ii

χ
(
aj ̸= a(z, d(h))

)
· u(z)·

P(h | µ) · P
(
z | µ, h ◦ a(z, d(h))

)
(∗∗)
= U(µ) +O(ϵ2)+

ϵ ·
∑
z∈Z

∑
h∈Ii

u(z) · P(h | µ) · P
(
z | µ, h ◦ aj

)
︸ ︷︷ ︸

Denote this term as (†)

In equation line (∗), we use that eij is zero in any info set
̸= Ii or any action ̸= aj ∈ AIi . In equation line (∗), we use

that P
(
z | µ, h◦aj) is zero if h ̸= hist(z) or aj ̸= a(z, d(h)).

Term (†) is constant in ϵ. Once we derived a better expres-
sion for (†), we can obtain the statement of the lemma from

∇ij U(µ) = lim
ϵ→0

1

ϵ

(
U(µ+ ϵ · eij)− U(µ)

)
= lim

ϵ→0

1

ϵ

(
U(µ) + ϵ · (†) +O(ϵ2)− U(µ)

)
= (†) .

Consider the case where 0 = Fr(Ii | µ) =
∑

h∈Ii
P(h | µ).

Recall that µ ∈×ℓ
i=1 ∆

mi−1. Therefore, all reach probabil-
ities are non-negative. In particular, we obtain P(h | µ) = 0
for all h ∈ Ii. Hence, (†) = 0.

Consider the other case, namely, where Fr(Ii | µ) > 0.

Then, we can simplify:

(†) =
∑
h∈Ii

∑
z∈Z

u(z) · P(h | µ) · P
(
z | µ, h ◦ aj)

)
=

Fr(Ii | µ)
Fr(Ii | µ)

·
∑
h∈Ii

P(h | µ) ·
∑
z∈Z

u(z) · P
(
z | µ, h ◦ aj)

)
= Fr(Ii | µ) ·

∑
h∈Ii

χ(h ∈ Ii) ·
P(h | µ)
Fr(Ii | µ)

· U(µ | h ◦ aj)

= Fr(Ii | µ) ·
∑
h∈Ii

PGT(h | µ, Ii) · U(µ | h ◦ aj)

= Fr(Ii | µ) · EUCDT,GT(aj | µ, Ii)

F.2 Proof of Lemma 15

Lemma. Strategy µ ∈ ×ℓ
i=1 ∆(AIi) of a game Γ is an

(EDT,GDH)-equilibrium if and only if for all i ∈ [ℓ]:

µi· ∈ argmax
y∈∆(AIi

)

U(µ1·, . . . , µi−1·, y, µi+1·, . . . , µℓ·) .

Proof. We start with the definition (EDT,GDH)-expected
utilities (Definition 11). Say, the player entered the game with
strategy µ ∈×ℓ

i=1 ∆(AIi), and arrived at an info set Ii with
P(Ii | µ) > 0. Let α ∈ ∆(AIi). Then

EUEDT,GDH(α | µ, Ii)

=
∑
z∈Z

PGDH( hist(z) | µIi 7→α, Ii ) · u(z)

=
∑
z∈Z

χ(I ∩ hist(z) ̸= ∅) · P(z | µIi 7→α)

P(Ii | µIi 7→α)
· u(z)

=
1

P(Ii | µIi 7→α)
·

∑
z∈Z

Ii∩hist(z)̸=∅

P(z | µIi 7→α) · u(z) (10)

Continue with the definition of an (EDT,GDH)-equilibrium
(Definition 12). When taking the argmax of (10) over
α ∈ ∆(AIi), we can rescale (10) by strictly positive fac-
tors and add terms to it without changing the solution set
to the argmax (as long as the factors and terms are inde-
pendent of α). First, multiply (10) by α-independent factor

P(Ii | µIi 7→α)
(7)
= P(Ii | µ) > 0. Second, observe that for

any z ∈ Z for which info set I does not occur in hist(z),
we have P(z | µIi 7→α) = P(z | µ). Hence, we can add
α-independent term∑

z∈Z
(I not in hist(z))

P(z | µIi 7→α) · u(z)



to (10) afterwards. These two steps yield

argmax
α∈∆(AIi

)

EUEDT,GDH(α | µ, Ii)

(10)
= argmax

α∈∆(AIi
)

1

P(Ii | µIi 7→α)
·

∑
z∈Z

I∩hist(z)̸=∅

P(z | µIi 7→α) · u(z)

= argmax
α∈∆(AIi

)

∑
z∈Z

I∩hist(z) ̸=∅

P(z | µIi 7→α) · u(z)

= argmax
α∈∆(AIi

)

∑
z∈Z

P(z | µIi 7→α) · u(z) = argmax
α∈∆(AIi

)

U(µIi 7→α)

= argmax
α∈∆(AIi

)

U(µ1·, . . . , µi−1·, α, µi+1·, . . . , µℓ·) .

where we use that strategy µIi 7→α has vector description
(µ1·, . . . , µi−1·, α, µi+1·, . . . , µℓ·).

All in all, we obtain that µ is an (EDT,GDH)-equilibrium

⇐⇒ ∀i ∈ [ℓ] with P(Ii | µ) > 0 :

µ(· | Ii) ∈ argmax
α∈∆(AIi

)

EUEDT,GDH(α | µ, Ii)

⇐⇒ ∀i ∈ [ℓ] with P(Ii | µ) > 0 :

µi· ∈ argmax
α∈∆(AIi

)

U(µ1·, . . . , µi−1·, α, µi+1·, . . . , µℓ·)

(∗)⇐⇒ ∀i ∈ [ℓ] :

µi· ∈ argmax
α∈∆(AIi

)

U(µ1·, . . . , µi−1·, α, µi+1·, . . . , µℓ·)

The last equivalence is based on the following argument: If
info set Ii has reach probability P(Ii | µ) = 0, then function
U(µ1·, . . . , µi−1·, α, µi+1·, . . . , µℓ·) is constant in the action
choice α at info set Ii. Therefore, any α′ ∈ ∆(AIi) satisfies

α′ ∈ argmax
α∈∆(AIi

)

U(µ1·, . . . , µi−1·, α, µi+1·, . . . , µℓ·) .

This is why we can add or remove this generally true state-
ment as a condition requirement.

G Solutions to Simple Games can be
Irrational

We here show that the solutions (ex ante optimal policy, and
(EDT,GDH)- and (CDT,GT)-equilibria) to simple games can
be irrational. In fact, we will show that they are sometimes
are not even expressible in radicals.

As a starting point, consider the polynomial equation

x5 − x− 1 = 0.

This equation has a unique real-valued solution x∗ ≈ 1.1673
that cannot be expressed in radicals, i.e., that cannot be ex-
pressed using sums, products, divisions and roots [Lang,
1994][P.121]. In particular, it is irrational.

From the above polynomial equation we will construct a
polynomial whose unique KKT point on [0, 1] is x∗/2. First,
note that the equation 32x5 − 2x− 1 = (2x)5 − 2x− 1 = 0,
obtained by substituting 2x for x in the above, has only one

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

Figure 5: A plot of the function p(x) = − 16
3
x6 + x2 + x.

solution, x̃ = x∗/2 ≈ 0.58365. Now consider the polyno-
mial

p(x) = −16

3
x6 + x2 + x.

Notice that the derivative of this is exactly −32x5 + 2x + 1.
Thus p’s only critical point is x̃. The function is plotted in
Figure 5. This point is a local maximum, and the function
has no other local maximum in the compact interval [0, 1] (or
elsewhere).

Now consider the game in Figure 6. Let U : R2 →
R : (x, y) 7→ − 16

3 x
6+x2+x = p(x) be the ex ante expected

utility function extended to R2. Clearly, the unique optimal
policy is x = x̃, y = 1− x̃. Next we will show that the unique
(CDT,GT)-equilibrium is also x = x̃. It is easy to see that
neither x = 0 nor x = 1 induces a (CDT,GT)-equilibrium.
So for any (CDT,GT)-equilibrium it has to be the case that
EUCDT,GT(a1 | x) = EUCDT,GT(a2 | x). By Lemma 14,
this means that we must have d

dxU(x, y) = d
dyU(x, y) = 0.

Therefore, the only (CDT,GT)-equilibrium is at x = x̃. By
Lemma 17, this means that the only (EDT,GDH)-equilibrium
is also at x = x̃.

All in all, we have given an easy to represent game for
which the only solution (x̃, 1− x̃) has entries which are irra-
tional (or even more, cannot be expressed in radicals).

H Proofs of the Main Results
H.1 Proof of Theorem 1
Recall the problem of maximizing the ex-ante utility in a
game Γ:

max
µ∈×ℓ

i=1 Rmi

U(µ)

s.t. µij ≥ 0 ∀i ∈ [ℓ],∀j ∈ [mi]
mi∑
j=1

µij = 1 ∀i ∈ [ℓ]

(11)

Then, the KKT conditions for (11) and a point µ ∈
×ℓ

i=1 Rmi are: There exist KKT multipliers {τij ∈ R}ℓ,mi

i,j=1
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Figure 6: A single-player game of imperfect recall whose only solu-
tion cannot be expressed in radicals.

and {κi ∈ R}ℓi=1 such that

µij ≥ 0 ∀i ∈ [ℓ],∀j ∈ [mi]
mi∑
j=1

µij = 1 ∀i ∈ [ℓ]

τij ≥ 0 ∀i ∈ [ℓ],∀j ∈ [mi]

τij = 0 or µij = 0 ∀i ∈ [ℓ],∀j ∈ [mi]

∇ij U(µ) = −τij + κi ∀i ∈ [ℓ],∀j ∈ [mi] .

(12)

We are ready to prove Theorem 1.

Theorem. Strategy µ ∈×ℓ
i=1 ∆(AIi) of Γ is a (CDT,GT)-

equilibrium if and only if µ is a KKT point of (11).

Proof. “ =⇒ ”:
Suppose µ ∈×ℓ

i=1 ∆(AIi) is a (CDT,GT)-equilibrium of Γ.
Then the first two KKT conditions of (12) are satisfied by
assumption. Let i ∈ [ℓ] and ∀j ∈ [mi].

If Fr(Ii | µ) = 0, then by Lemma 14 we have ∇ij U(µ) =
0. Therefore, choose τij = 0 and κi = 0 to satisfy the last
three KKT conditions for the respective i and j.

Suppose Fr(Ii | µ) > 0. Choose

κi = max
j′∈[mi]

∇ij′ U(µ) .

The choice of τij depends on µij . If µij > 0, then by Lemma
14 and by the equivalent characterization of a (CDT,GT)-
equilibrium right below Definition 10, we have

∇ij U(µ) = Fr(Ii | µ) · EUCDT,GT(aj | µ, Ii)
= max

j′∈[mi]

{
Fr(Ii | µ) · EUCDT,GT(aj′ | µ, Ii)

}
= max

j′∈[mi]
∇ij′ U(µ) = κi .

Therefore choose τij = 0. If µij = 0, on the other
hand, then the above equation chain would yield inequality
∇ij U(µ) ≤ κi instead (when transitioning to the max).
Thus, choose τij = κi −∇ij U(µ). These choices of κi and
τij satisfy the last three KKT conditions for the respective i
and j.

“ ⇐= ”:
Suppose µ is a KKT point of problem (11), that is, it sat-
isfies the KKT conditions (12) for some KKT multipliers
{τij ∈ R}ℓ,mi

i,j=1 and {κi ∈ R}ℓi=1. Then, the first two KKT
conditions ensure that µ makes a valid strategy for Γ (recall
that we always identify µ(aj | Ii) := µij for info set Ii ∈ I∗
and action aj ∈ Ii). So let us check equivalent characteri-
zation of a (CDT,GT)-equilibrium right below Definition 10.
Let i ∈ [ℓ] and j ∈ [mi] be such that Fr(Ii | µ) > 0 and
µij > 0. Then, Lemma 14 and the last three KKT conditions
give us for all j′ ∈ [mi]:

EUCDT,GT(aj | µ, Ii) =
Fr(Ii | µ)
Fr(Ii | µ)

· EUCDT,GT(aj | µ, Ii)

=
1

Fr(Ii | µ)
· ∇ij U(µ) =

1

Fr(Ii | µ)
· (−τij + κi)

τij=0
=

1

Fr(Ii | µ)
· κi ≥

1

Fr(Ii | µ)
· (−τij′ + κi)

=
1

Fr(Ii | µ)
· ∇ij′ U(µ) = EUCDT,GT(aj′ | µ, Ii)

This implies EUCDT,GT(aj | µ, Ii) =
maxa∈AIi

EUCDT,GT(a | µ, Ii). Overall, we get that µ
is a (CDT,GT)-equilibrium for Γ

H.2 Reproof of Lemma 17
The next lemma is due to Oesterheld and Conitzer [2022]
[cf. Piccione and Rubinstein, 1997].
Lemma. An ex-ante optimal strategy of a game Γ is also an
(EDT,GDH)-equilibrium. An (EDT,GDH)-equilibrium is also
a (CDT,GT)-equilibrium.

In particular, any single-player extensive-form game Γ
with imperfect recall admits an (EDT,GDH)-equilibrium and
a (CDT,GT)-equilibrium.

Proof. An ex-ante optimal strategy is defined as a maximum
to the maximization problem (1). Therefore, it will in particu-
lar satisfy the characterization of an (EDT,GDH)-equilibrium
according to Lemma 15.

Let us show that an (EDT,GDH)-equilibrium is a
(CDT,GT)-equilibrium by using their respective ex-ante char-
acterizations from Lemma 15 and Theorem 1. So let µ =∈



×ℓ
i=1 ∆(AIi) satisfy for all i ∈ [ℓ]

µ∗
i· ∈ argmax

y∈∆(AIi
)

U(µ∗
1·, . . . , µ

∗
i−1·, y, µ

∗
i+1·, . . . , µ

∗
ℓ·) .

For i ∈ [ℓ] denote the function

qi,µ : ∆mi−1 → R
y 7→ U(µ1·, . . . , µi−1·, y, µi+1·, . . . , µℓ·) .

Then, for j ∈ [mi], we have

∇j qi,µ(y) = ∇ij U(µ1·, . . . , µi−1·, y, µi+1·, . . . , µℓ·) .

By assumption on µ, each µi· is a solution to the maximum
problem

max
y∈∆mi−1

qi,µ(y) .

Global optimum µi· is therefore in particular a KKT point of
that problem. So there exist KKT multipliers {τij ∈ R}mi

j=1
and κi such that

µij ≥ 0 ∀j ∈ [mi]
mi∑
j=1

µij = 1

τij ≥ 0 ∀j ∈ [mi]

τij = 0 or µij = 0 ∀j ∈ [mi]

∇ij U(µ) = ∇j qi,µ(µi·) = −τij + κi ∀j ∈ [mi] .

Since i ∈ [ℓ] was arbitrary, we can use these multipliers to
obtain that µ satisfies KKT conditions (12).

Lastly, since there always exists an ex-ante optimal strategy
(as a maximum (1) of a continuous polynomial function over
a compact domain), there also always exists an (EDT,GDH)-
equilibrium and (CDT,GT)-equilibrium.

H.3 Approximate and Well-Supported
(CDT,GT)-equilibria

Before we get to the proof of Theorem 2, we should discuss
two definitions of being close to a (CDT,GT)-equilibrium that
are useful to computatational considerations:

Definition 19. Let Γ be a single-player extensive-form game
with imperfect recall, µ be a strategy for Γ, and ϵ > 0 be a
precision parameter. Then:

• µ is called an ϵ-approximate (CDT,GT)-equilibrium if
for all I ∈ I∗ with Fr(I | µ) > 0:

EUCDT,GT
(
µ(· | I) | µ, I

)
≥ max

a′∈AI

EUCDT,GT(a
′ | µ, I)− ϵ .

• µ is called an ϵ-well-supported (CDT,GT)-equilibrium if
for all I ∈ I∗ with Fr(I | µ) > 0 and all a ∈ AI with
µ(a | I) > 0:

EUCDT,GT(a | µ, I) ≥ max
a′∈AI

EUCDT,GT(a
′ | µ, I)− ϵ .

Identity (6) directly implies the following relationship:

Lemma 20. Let Γ be a single-player extensive-form game
with imperfect recall and ϵ > 0. Then any ϵ-well-supported
(CDT,GT)-equilibrium µ is also an ϵ-approximate (CDT,GT)-
equilibrium.

We can also prove a polynomial-time reduction in the re-
verse direction for all those games that have admit the follow-
ing characteristic:

Definition 21. Ia single-player extensive-form game Γ (with
imperfect recall), a value λ > 0 is said to be a lower bound
on positive visit frequencies in Γ if it satisfies for all info sets
I and all strategies µ in Γ

Fr(I | µ) = 0 or Fr(I | µ) ≥ λ .

Since Fr(I | µ) as a function in µ is a polynomial func-
tion, and therefore continuous over the connected strategy set
×ℓ

i=1 ∆(AIi), this definition becomes equivalent to

∀ I ∈ I∗ : Fr(I | µ) = 0∀µ or Fr(I | µ) ≥ λ ∀µ . (13)

While the next lemma seems to be novel for imperfect-
recall games, the proof borrows its main ideas from the equiv-
alency of ϵ-approximate Nash equilibria and ϵ-well-supported
Nash equilibria, shown by Chen et al. [2006]. In the below
formulation and proof, any roots

√
x taken shall always refer

to the positive valued root.

Lemma 22. Let Γ be a single-player extensive-form game
with imperfect recall with a lower bound λ ∈ Q on its posi-
tive visit frequencies. Then we can compute a Lipschitz con-
stant L ≥ 1 w.r.t. the infinity norm || · ||∞ for all functions(
EUCDT,GT(a | ·, I)

)
I∈I,Fr(I|·)≥λ,a∈AI

in µ over the strategy

space×ℓ
ı̂=1 ∆(AIı̂). Let ϵ > 0 such that ϵ < 1

mi
for all info

sets Ii ∈ I∗.
Then, given an ϵ-approximate (CDT,GT)-equilibrium µ of

Γ, we can compute a (3L|H|
√
ϵ)-well-supported (CDT,GT)-

equilibrium of Γ in polynomial time.

Proof. Let us observe how to compute such a Lipschitz con-
stant L in polynomial time. We first describe the general pro-
cess of computing a Lipschitz constant Lq of any polynomial
function q : Rn → Rm w.r.t. the infinity norm and over the
hypercube [0, 1]n. One possible Lipschitz constant is

max
x∈[0,1]n

{||∇q(x)||∞} = max
x∈[0,1]n

max
i∈[n]

|∇iq(x)|

= max
i∈[n]

max
x∈[0,1]n

|∇iq(x)| .

Note that ∇iq(x) is a polynomial function itself and
that the factors xki in its monomials are < 1. Thus,
maxx∈[0,1]n |∇iq(x)| can be upper bounded by the absolute
value sum

∑
λD∈∇iq

|λD| of all coefficients present in ∇iq.
Taking the maximum over index i over those upper bound
sums gives us a Lipschitz value Lq that can be computed in
polynomial time in the description size of q.

Going back to the setup of this lemma, take an info set Ii
of Γ with Fr(Ii | ·) ≥ λ and an action aj ∈ Ai. Then we can



derive as possible Lipschitz constant for EUCDT,GT(aj | ·, Ii):
max

µ∈×ℓ
i=1 ∆(AIi

)
{||∇µ EUCDT,GT(aj | µ, Ii)||∞}

≤ max
µ∈[0,1]

∑
i mi

{||∇µ EUCDT,GT(aj | µ, Ii)||}

= max
µ∈[0,1]

∑
i mi

{∣∣∣∣∣∣∇µ

(∇ij U(µ)

Fr(Ii | µ)

)∣∣∣∣∣∣}
= max

µ∈[0,1]
∑

i mi{∣∣∣∣∣∣Fr(Ii | µ) · ∇µ ∇ij U(µ)−∇ij U(µ) · ∇µ Fr(Ii | µ)
Fr(Ii | µ)2

∣∣∣∣∣∣}
≤ max

µ

1

Fr(Ii | µ)2
·
(
max
µ

Fr(Ii | µ) ·max
µ

||∇µ ∇ij U(µ)||

+max
µ

|∇ij U(µ)| ·max
µ

||∇µ Fr(Ii | µ)||
)

≤ 1

λ2
·
(
|H| ·max

µ
||∇µ ∇ij U(µ)||

+max
µ

|∇ij U(µ)| ·max
µ

||∇µ Fr(Ii | µ)||
)
.

The terms maxµ ||∇µ ∇ij U(µ)|| and maxµ ||∇µ Fr(Ii |
µ)|| as well maxµ |∇ij U(µ)| can be bounded above with
the method described in the previous paragraph. The fi-
nal value can be chosen as our Lipschitz constant Lij for
EUCDT,GT(aj | ·, Ii). Finally, we can choose

L = max
Ii∈I∗,Fr(Ii|·)≥λ,aj∈AI

{1,max
i,j

Lij}

as the desired mutual Lipschitz constant. This construction
takes polynomial time in the encoding of Γ and λ.

It remains to prove the first result. Denote with Uij(µ) :=
EUCDT,GT(aj | µ, Ii) the (CDT,GT)-expected utility function
in µ from being in info set Ii and using action aj . Let µ be an
ϵ-approximate (CDT,GT)-equilibrium of Γ, and take an info
set Ii with Fr(Ii | ·) > 0, thus Fr(Ii | ·) ≥ λ. As the first
step, let us show that any action that sufficiently suboptimal
will also be played with only very low probability. Assume
aj′ ∈ AIi is a suboptimal action, that is, there exists some
aj ∈ AIi such that Uij(µ) ≥ Uij′(µ) +

√
ϵ. Consider the

mixed action α ∈ ∆(AIi) defined as αj′ = 0, αj = µij +
µij′ , and αȷ̂ = µiȷ̂ for all ȷ̂ ̸= j, j′. Since µ is assumed to be
an ϵ-approximate (CDT,GT)-equilibrium, we get∑
ȷ̂∈[mi]

µiȷ̂ · Uiȷ̂(µ)
(6)
= EUCDT,GT(µ(· | Ii) | µ, Ii)

≥ max
k∈[mi]

EUCDT,GT(ak | µ, Ii)− ϵ

= −ϵ+
∑

ȷ̂∈[mi]

αȷ̂ · max
k∈[mi]

Uik(µ)

≥ −ϵ+
∑

ȷ̂∈[mi]

αȷ̂ · Uiȷ̂(µ)

= −ϵ+ (µij + µij′) · Uij(µ) +
∑
ȷ̸̂=j,j′

µiȷ̂ · Uiȷ̂(µ) .

Rearranging yields

µij′ · Uij′(µ) ≥ µij′ · Uij(µ)− ϵ .

Using Uij(µ) ≥ Uij′(µ) +
√
ϵ, we therefore get

µij′ ≤
ϵ

Uij(µ)− Uij′(µ)
≤ ϵ√

ϵ
=

√
ϵ .

In other words, a suboptimal action aj′ ∈ AIi in an ϵ-
approximate (CDT,GT)-equilibrium will be played with low
probability. Denote with lowi ⊆ [mi] the set of all those ac-
tion indices j′ such that aj′ is played with ≤

√
ϵ probability in

µ. Since we assumed
√
ϵ < 1

mi
, there will be at least one ac-

tion index j ∈ [mi]\lowi. We can therefore create a new can-
didate strategy π from µ by redistributing the probability of
the lowi actions to the others and achieve well-supportedness
for π. More precisely, define π ∈×ℓ

i=1 ∆
mi−1 as follows:

• for all Ii with Fr(Ii | ·) = 0 and all aj ∈ AIi
set πij := µij ,

• for all Ii with Fr(Ii | ·) ≥ λ and all aj ∈ AIi with
µij ≤

√
ϵ set πij = 0, and

• for all Ii with Fr(Ii | ·) ≥ λ and all aj ∈ AIi with
µij >

√
ϵ set

πij = µij +

∑
ȷ̂∈lowi

µiȷ̂

mi − |lowi|
.

This is easily computable. Let us prove that π is
a (3L|H|

√
ϵ)-well-supported (CDT,GT)-equilibrium: First

note ||π − µ||∞ ≤
√
ϵ · |H|. Let Ii ∈ I∗ again be an info

set with Fr(Ii | ·) > 0, hence Fr(Ii | ·) ≥ λ, and let an action
aj ∈ AIi have π(aj | Ii) > 0. Recall that L serves as a Lips-
chitz constant on Uij . By construction of π, we get µij >

√
ϵ

which implies that aj could not have been suboptimal for µ,
that is,

Uij(µ) ≥ max
ȷ̂∈[mi]

Uiȷ̂(µ)−
√
ϵ . (14)

Therefore,

EUCDT,GT(aj | π, Ii)
= Uij(π) = Uij(π)− Uij(µ) + Uij(µ)

≥ −L · ||π − µ||+ Uij(µ)

(14)

≥ −L ·
√
ϵ · |H|+ max

ȷ̂∈[mi]
Uiȷ̂(µ)−

√
ϵ

≥ −2L|H|
√
ϵ+ max

ȷ̂∈[mi]
{Uiȷ̂(µ)− Uiȷ̂(π) + Uiȷ̂(π)}

≥ −2L|H|
√
ϵ+ max

ȷ̂∈[mi]
{−L · ||π − µ||+ Uiȷ̂(π)}

≥ −3L|H|
√
ϵ+ max

ȷ̂∈[mi]
Uiȷ̂(π)

= max
aȷ̂∈AIi

EUCDT,GT(aȷ̂ | π, Ii)− 3L|H|
√
ϵ

H.4 Proof of Theorem 2
Theorem. (CDT,GT)-EQUILIBRIUM is CLS-hard. CLS-
hardness holds even for games restricted to:
(1.) a tree depth of 6 and the player has 2 actions per info

set,



(2.) no absentmindedness and a tree depth of 6, and
(3.) no chance nodes, a tree depth of 5, and only one info set.
The problem is in CLS for the subclass of problem instances of
(CDT,GT)-EQUILIBRIUM where a lower bound on positive
visit frequencies in Γ is easily obtainable.

We prove this result in four parts.

CLS Membership of restricted (CDT,GT)-EQUILIBRIUM
By Theorem 1, (CDT,GT)-equilibria of Γ coincide with the
KKT points of the strategy utility function U of Γ. Finding an
approximate KKT point of a continuously differentiable func-
tion over a compact domain was shown to be CLS-complete
by Fearnley et al. [2023]:
Definition 23. An instance of the problem KKT consists of
(1) a precision parameter ϵ > 0 encoded in binary, (2) a
matrix A ∈ Rm×n and a vector b ∈ Rm defining a bounded
non-empty domain D = {x ∈ Rn : Ax ≤ b}, (3) two well-
behaved arithmetic circuits f : Rn → R and ∇f : Rn →
Rn, and (4) a Lipschitz constant L > 0.

A solution consists of a point x ∈ D such that there ex-
ist µ1, . . . , µm ≥ 0 such that ||∇f(x) + ATµ|| ≤ ϵ and
µT (Ax − b) = 0. Alternatively, we also accept points
x, y ∈ D as a solution that show that one of the following
is true: (i) f or ∇f is not L-Lipschitz, or (ii) ∇f is not the
gradient of f .
Lemma 24 (Fearnley et al. [2021]). KKT is CLS-complete.

Fearnley et al. [2021] note that any norm can be used in
Definition 23. We will henceforth use the infinity norm ||·||∞.

Let us outline the reduction from the restricted (CDT,GT)-
EQUILIBRIUM to KKT. Let (Γ, ϵ) be an instance of
(CDT,GT)-EQUILIBRIUM for which a lower bound λ on
positive visit frequencies in Γ can be computed in polyno-
mial time. Construct the strategy utility function U of Γ and
its gradient ∇U . Then −U and −∇U as polynomial func-
tions will make well-behaved arithmetic circuits f and ∇f
(the negative sign comes in because KKT is about minimiz-
ing f whereas (CDT,GT)-equilibrium is about utility maxi-
mization). The domain D will be the Cartesian product of
simplices×l

i=1 ∆(AIi) described with inequalities as in (11).
Next, we can construct a Lipschitz constant L for the polyno-
mial functions −U and −∇U over×l

i=1 ∆(AIi) as described
in the proof of Lemma 22. Finally, set the precision parame-
ter δ of the KKT instance to δ = 1

2λϵ, which is polynomial
time computable in the encoding size of (Γ, ϵ).

Get a solution to the KKT instance. We have by construc-
tion that L is a valid Lipschitz constant for f and ∇f , and that
∇f is indeed the gradient of f . Thus, the solution has to be
a δ-KKT point µ, i.e. have KKT multipliers {τij ∈ R}ℓ,mi

i,j=1

and {κi ∈ R}ℓi=1 such that
µij ≥ 0 ∀i ∈ [ℓ],∀j ∈ [mi]
mi∑
j=1

µij = 1 ∀i ∈ [ℓ]

τij ≥ 0 ∀i ∈ [ℓ],∀j ∈ [mi]

τij = 0 or µij = 0 ∀i ∈ [ℓ],∀j ∈ [mi]

|∇ij U(µ)− (−τij + κi)| ≤ δ ∀i ∈ [ℓ],∀j ∈ [mi] .

The point µ forms a valid strategy of Γ. Let us show that it is
also an ϵ-well-supported (CDT,GT)-equilibrium of Γ. Let Ii
be an info set with Fr(Ii | µ) > 0, hence Fr(Ii | µ) ≥ λ, and
let aj ∈ AIi be an action with µij = µ(aj | Ii) > 0. Then,
for any other action aj′ ∈ AIi , we have by Lemma 14 and
the KKT conditions:

EUCDT,GT(aj | µ, Ii) =
∇ij U(µ)

Fr(Ii | µ)
≥ −τij + κi − δ

Fr(Ii | µ)

=
κi − δ

Fr(Ii | µ)
≥ −τij′ + κi − δ

Fr(Ii | µ)
≥ ∇ij′ U(µ)− 2δ

Fr(Ii | µ)

= EUCDT,GT(aj′ | µ, Ii)−
2

Fr(Ii | µ)
· δ

≥ EUCDT,GT(aj′ | µ, Ii)−
2

λ
· δ

= EUCDT,GT(aj′ | µ, Ii)− ϵ

Thus µ forms an ϵ-well-supported (CDT,GT)-equilibrium
for Γ, and therefore, also an ϵ-(CDT,GT)-equilibrium for Γ.

First CLS Hardness Result of Theorem 2
We will derive our first CLS hardness result from a KKT
problem studied by Babichenko and Rubinstein [2021]. Con-
sider the maximization of a polynomial function p : Rℓ → R
over the hypercube:

max
x∈Rℓ

p(x)

s.t. x ∈ [0, 1]ℓ .
(15)

Here, p is again assumed to be represented in the Turing (bit)
model p(x) =

∑
D∈MB(d,ℓ) λD ·

∏
i∈[ℓ] x

Di
i .

Definition 25. An instance of the problem KKTPOLYOVER-
CUBE consists of a polynomial function p : Rℓ → R together
with a precision value ϵ > 0. A solution consists of a point
x ∈ [0, 1]ℓ that is an ϵ-KKT point of the maximization prob-
lem (15):

∀i ∈ [ℓ] : xi > 0 =⇒ ∇i p(x) ≥ −ϵ
∀i ∈ [ℓ] : xi < 1 =⇒ ∇i p(x) ≤ ϵ

(16)

Babichenko and Rubinstein [2021] call this problem GD-
FIXEDPOINT.
Lemma 26 (Babichenko and Rubinstein [2021]). KKT-
POLYOVERCUBE is CLS-complete. Hardness holds even2 for
polynomials in which every monomial has degree 5.

We can now derive CLS-hardness of (CDT,GT)-
EQUILIBRIUM by reducing from KKTPOLYOVERCUBE.

Take an instance (p : Rℓ → R, ϵ) of KKTPOLYOVER-
CUBE where p is known to only have degree 5 monomials.
There are at most

(
ℓ+5−1

5

)
= O(ℓ5) many such monomials.

Consider the modified polynomial

p̂ :
ℓ

×
i=1

R2 → R(
(xi1, xi2)

)ℓ
i=1

7→ p(x11, x21, . . . , xℓ1) .

(17)

2Hardness even holds if each summand λD ·
∏

i∈[ℓ] x
Di
i for∑

D∈MB(5,ℓ) has degree 5 and is component-wise concave (and
therefore the polynomial is also component-wise concave).



Create a game Γ out of p̂ as described in Appendix A with
the second variant, which is constructed in polynomial time
in the encoding of p since its degree is known to be 5. Let
|H| be the number of nodes in Γ. Recall that for any info set
Ii of Γ its visit frequency Fr(Ii | µ) is constant in the used
strategy µ and easily computable by (5). Thus, we are able
to get a lower bound on the positive visit frequencies, which
allows us to use Lemma 22 later on. Note moreover that the
visit frequencies are always bounded above by |H|. Set

δ := min{1
3
,

ϵ2

(3L|H|2)2
}

which is computable in polynomial time in the encoding of p
and ϵ.

Recall from Appendix A that the strategy utility function
U of Γ has the property U(µ) = p̂(µ) = p(µ11, . . . , µℓ1)

for any point µ ∈ ×ℓ
i=1 R2. Therefore, ∇i1 U(µ) =

∇i p(µ11, . . . , µℓ1) and ∇i2 U(µ) = 0 for all µ ∈×ℓ
i=1 R2

and i ∈ [ℓ].
Let π∗ ∈ ×ℓ

i=1 ∆
1 be a a solution to the (CDT,GT)-

EQUILIBRIUM-instance (Γ, δ). By Lemma 22, we can
compute from it a (3L|H|

√
δ)-well-supported (CDT,GT)-

equilibrium µ∗ = (µ∗
ij)

ℓ,2
i,j=1 ∈ ×ℓ

i=1 ∆
1 of Γ in poly-

nomial time. For us µ∗ is, in particular, a ϵ
|H| -well-

supported (CDT,GT)-equilibrium because we set δ such that
3L|H|

√
δ ≤ ϵ

|H| . We can now show that the point x∗ :=

(µ∗
i1)

ℓ
i=1 ∈ [0, 1]ℓ is a solution to the KKTPOLYOVERCUBE-

instance (p : Rℓ → R, ϵ).
Let us first consider any index i ∈ [ℓ] with Fr(Ii | µ∗) = 0.

Then, by Lemma 14, we get 0 = ∇i1 U(µ∗) = ∇i p(x
∗).

Thus, such indices i always satisfy the conditions (16) inde-
pendent of the value x∗i .

Now consider an index i ∈ [ℓ] with Fr(Ii | µ∗) > 0 and
0 < x∗i = µ∗

i1. Then, due to µ∗ being a ϵ
|H| -well-supported

(CDT,GT)-equilibrium, we get

EUCDT,GT(a1 | µ∗, Ii) ≥ max
j=1,2

EUCDT,GT(aj | µ∗, Ii)−
ϵ

|H|

⇐⇒ EUCDT,GT(a1 | µ∗, Ii) ≥ EUCDT,GT(a2 | µ∗, Ii)−
ϵ

|H|

With Lemma 14, we can therefore derive

∇i p(x
∗) = ∇i1 U(µ∗)

= Fr(Ii | µ∗) · EUCDT,GT(a1 | µ∗, Ii)

≥ Fr(Ii | µ∗) ·
(

EUCDT,GT(a2 | µ∗, Ii)−
ϵ

|H|

)
= Fr(Ii | µ∗) · EUCDT,GT(a2 | µ∗, Ii)− Fr(Ii | µ∗) · ϵ

|H|

= ∇i2 U(µ)− Fr(Ii | µ∗) · ϵ

|H|
= −Fr(Ii | µ∗) · ϵ

|H|

≥ −|H| · ϵ

|H|
= −ϵ

Now consider an index i ∈ [ℓ] with Fr(Ii | µ∗) > 0 and
1 > x∗i = µ∗

i1 = 1− µ∗
i2, i.e., µ∗

i2 > 0. Then with analogous

arguments, we get

EUCDT,GT(a2 | µ∗, Ii) ≥ max
j=1,2

EUCDT,GT(aj | µ∗, Ii)−
ϵ

|H|

⇐⇒ EUCDT,GT(a1 | µ∗, Ii) ≤ EUCDT,GT(a2 | µ∗, Ii) +
ϵ

|H|
Similarly to the other case, we can therefore derive
∇i p(x

∗) = ∇i1 U(µ∗)

= Fr(Ii | µ∗) · EUCDT,GT(a1 | µ∗, Ii)

≤ Fr(Ii | µ∗) ·
(

EUCDT,GT(a2 | µ∗, Ii) +
ϵ

|H|

)
= ∇i2 U(µ) + Fr(Ii | µ∗) · ϵ

|H|
= Fr(Ii | µ∗) · ϵ

|H|

≤ |H| · ϵ

|H|
= ϵ

Therefore, all in all, point x∗ makes a solution to the
KKTPOLYOVERCUBE-instance (p : Rℓ → R, ϵ). This fin-
ishes the polynomial time reduction from the search problem
of DEGREE-5-KKTPOLYOVERCUBE to the search problem
(CDT,GT)-EQUILIBRIUM.

Note that in the above reduction, the constructed game Γ
has a tree depth of 6. The root is a chance node with a num-
ber of outgoing edges that equals the number of monomials
in p. Any other node of Γ will have two outgoing actions.
Therefore, CLS-hardness of (CDT,GT)-EQUILIBRIUM re-
mains even if the game instance has a tree depth of 6 and
the player only has 2 actions per info set.

Second CLS Hardness Result of Theorem 2
The second and third CLS hardness results will both rely on
the following game-theoretic problem studied by Babichenko
and Rubinstein [2021] (again).

Let G be a n-player simultaneous game with action
sets {Ai}i∈[n] of size mi := |Ai| and with utility func-
tions Vi : ×n

ı̂=1 ∆(Aı̂) → R for each player i. A
mixed action profile x = (xij)

n,mi

i,j=1 ∈ ×n
i=1 ∆(AIi)

is called an ϵ-Nash equilibrium of G if for every player
i ∈ [n] and every action aj ∈ Ai of player i, we have
Vi(x) ≥ Vi(x1·, . . . , xi−1·, aj , xi+1·, . . . , xn·) − ϵ. In stan-
dard game theory notation, this would be phrased as Vi(x) ≥
Vi(aj , x−i·) − ϵ. For us, it will be helpful to use the no-
tation of a EDT deviation, in which this condition becomes
Vi(x) ≥ Vi(xIi 7→aj

)− ϵ.
A c-polytensor game is a multiplayer simultaneous game

presented in terms of payoff tables, one for each subset of c
players. Given a pure-strategy action profile of all players, a
player’s payoff consists of the sum of payoffs they get from
the payoff tables of the c-subsets they belong to. For any
constant c, such games with n ≥ c players and up to m pure
actions per player have a polynomial-sized representation in
n andm because there are ≤ n·

(
n
c

)
·mc = O(nc+1·m5) many

payoff entries overall. A c-polytensor identical interest game
is a c-polytensor game in which every subgame associated
with a c-subset yields the participating player the same utility.
Definition 27. An instance of the problem c-POLYTENSOR-
IDENTICALINTEREST consists of a c-polytensor identical in-
terest game together with a precision value ϵ > 0. A solution
consist of an ϵ-Nash equilibrium of the game.



Lemma 28 (Babichenko and Rubinstein [2021]). 5-
POLYTENSOR-IDENTICALINTEREST is CLS-complete.

Without changing the complexity, we may assume that
in instances of 5-POLYTENSOR-IDENTICALINTEREST every
player has exactly m actions (by possibly copying actions)
and that the payoffs lie in [0, 1] (by shifting and rescaling util-
ities them).

We can now prove the second CLS hardness
of (CDT,GT)-EQUILIBRIUM by reducing from 5-
POLYTENSOR-IDENTICALINTEREST.

Take an instance (G, ϵ) of 5-POLYTENSOR-
IDENTICALINTEREST. Let n be the number of players
of G, and m be the number of pure strategies of player i.
Then, each subset of 5 players of G has a table of m5 payoffs
in [0, 1] one for each of their possible pure profiles. Moreover,
there will be

(
n
5

)
many subsets of 5 players among n players.

Collect all those subsets to Λ := {i[5] ⊂ [n] : |i[5]| = 5}.
If i[5] ∈ Λ is a 5-subset and the players of i[5] play strategy
profile µi[5] ∈ ×i∈i[5]

∆(AIi), then denote the payoff that
these players get in that subgame by ui[5](µi[5]). Then, the
overall utility function Vi of a player i ∈ [n] takes as input a
strategy profile µ for the game Γ and returns the payoff:

Vi(µ) =
∑

i[5]∈Λ: i∈i[5]

ui[5](µi[5])

Construct an instance (Γ, δ) of (CDT,GT)-EQUILIBRIUM
as follows. There will be n info sets I1, . . . , In. The root
of the tree of Γ is a chance node having

(
n
5

)
subtrees, one

for each set i[5] of 5 players of G. The actions towards these
subtrees are chosen uniform randomly, that is, with the same
probability 1/

(
n
5

)
. Consider a subtree Ti[5] associated with a

set i[5] = {i1, . . . , i5} ∈ Λ. Then Ti[5] shall have depth 5
with depth layer k − 1 for k ∈ [5] corresponding to player
ik. Every node of Ti[5] of depth k1 shall be assigned to info
set Iik and havem outgoing edges labelled by the pure strate-
gies of player ik. Nodes of depth 5 shall be terminal nodes.
If terminal node z of Γ has action history (i[5], j1, . . . , j5),
then it shall yield a payoff equal to ui[5](j1, . . . , j5), that is,
the payoff of the subgame associated with i[5] from the pure
action profile (j1, . . . , j5). Define the precision parameter as
δ := ϵ/

(
n−1
4

)
. The instance (Γ, δ) can be constructed in poly-

nomial time in the encoding of (G, ϵ). Note that the game Γ
has tree depth 6 and no absentmindedness.

Take an info set Ii of Γ. The player reaches info set Ii
with probability one in every subtree Ti[5] with i ∈ i[5], in-
dependent of her strategy choice µ. Thus, the overall reach
probability of each info set Ii of Γ is exactly the number
subsets i[5] ∈ Λ that contain i, divided by the number of 5-
subsets overall, which is

(
n−1
4

)
/
(
n
5

)
= 5

n .3 In particular, this
reach probability is non-zero, so an approximate (CDT,GT)-
equilibrium must be approximately optimal in every info set
Ii of Γ.

Since there is no absentmindedness in Γ, we get by Ap-
pendix E for all info sets Ii, all strategies µ, and all mixed

3Note that this value would also serve as a lower bound on posi-
tive frequencies.

actions α ∈ ∆(AIi):

EUCDT,GT(α | µ, Ii)
= EUEDT,GDH(α | µ, Ii)
(10)
=

1

P(Ii | µIi 7→α)
·

∑
z∈Z

Ii∩hist(z)̸=∅

P(z | µIi 7→α) · u(z)

=
n

5
·

∑
i[5]∈Λ: i∈i[5]

∑
z∈Ti[5]

P(z | µIi 7→α) · u(z)

=
n

5
·

∑
i[5]∈Λ: i∈i[5]

∑
j[5]∈×̂ı∈i[5]

AIı̂

P(zi[5], j[5] | µIi 7→α) · ui[5](j[5])
(∗)
=

n

5
·

∑
i[5]∈Λ: i∈i[5]

1(
n
5

) · ui[5]((µIi 7→α)i[5]

)
=
n

5
· 1(

n
5

) · Vi(µIi 7→α)

=
1(

n−1
4

) · Vi(µIi 7→α)

where in (∗) we used that for any i[5] = {i1, . . . , i5} ∈ Λ
and strategy µ that

ui[5](µi[5])

=
∑

(jk)5k=1∈×5
k=1 AIik

ui[5](j1, . . . , j5) ·
5∏

k=1

µi[5](jk | Iik)

=
∑

j[5]∈×i′∈i[5]
AI

i′

(
n

5

)
· P(zi[5], j[5] | µIi 7→α) · ui[5](j[5]) .

Let µ∗ ∈×ℓ
i=1 ∆(AIi) be a solution to the (CDT,GT)-

EQUILIBRIUM-instance (Γ, δ). Then we can show that
the mixed action profile (µ∗

i·)
n
i=1 is a solution to 5-

POLYTENSOR-IDENTICALINTEREST instance (G, ϵ), that is,
an ϵ-Nash equilibrium of G. Note that µ∗

Ii 7→µ∗
i·

= µ∗. We
obtain for all player i ∈ [n] and all pure actions j ∈ [mi] of
player i:

Vi(µ
∗) =

=

(
n−1
4

)(
n−1
4

) · Vi(µ∗
Ii 7→µ∗

i·
)

=

(
n− 1

4

)
· EUCDT,GT(µ

∗
i· | µ∗, Ii)

≥
(
n− 1

4

)
·
[
EUCDT,GT(aj | µ∗, Ii)− δ

]
=

(
n−1
4

)(
n−1
4

) · Vi(µ∗
Ii 7→aj

)−
(
n− 1

4

)
· δ

= Vi(µ
∗
Ii 7→aj

) + ϵ .

Therefore, a δ-(CDT,GT)-equilibrium in Γ makes an ϵ-
Nash equilibrium in G.



Third CLS Hardness Result of Theorem 2
We prove the third CLS hardness of Theorem 2 by again re-
ducing from 5-POLYTENSOR-IDENTICALINTEREST.

Take an instance (G, ϵ) of 5-POLYTENSOR-
IDENTICALINTEREST. Use the same notation as
in the last reduction proof from 5-POLYTENSOR-
IDENTICALINTEREST. In particular, G has n players
with m actions, and payoffs lie in [0, 1]. Moreover, we can
assume ϵ < 1.

Corresponding Game Construct an instance (Γ, δ) of
(CDT,GT)-EQUILIBRIUM as follows. Γ is a game tree of
depth 5 and all nodes of Γ will be player nodes that be-
long to the same info set I . The action set AI is defined
as {(i, j) : i ∈ [n], j ∈ [m]}. Nodes of depth ≤ 4 all
have out-degree n · m. At depth 5, we have (n · m)5 many
nodes that shall be terminal nodes. If the path to a ter-
minal node z is (i[5], j[5]) = ((i1, j1), . . . , (i5, j5)), and if
η(i[5]) ∈ {1, . . . , 5} is the number of distinct values present4
in i[5] of z, then z shall yield the player a payoff of

1. M2 · η(i[5]) if η(i[5]) ≤ 4, and

2. M2 · η(i[5]) + ui[5](j[5]) if η(i[5]) = 5.

Note that we have constant visit frequency Fr(I | µ) =
Fr(I) = 5 independent of the strategy µ used in Γ. This
makes Lemma 22 applicable to Γ. Let L be the Lipschitz
constant L from Lemma 22. Then we can define the values

M1 := 2 · 100 · n9m4 · 1
ϵ

δ1 :=
1

5

( 1
n
− 1

M1

)4
· ϵ
2

δ2 :=
( δ1

3L
∑5

k=0(nm)k

)2
M2 := (δ1 + n4) ·M4

1

where the sum
∑5

k=0(nm)k represents the number of nodes
|H| in Γ. To give some intuition, δ2 is chosen such
that Lemma 22 can be applied to get a δ1-well-supported
(CDT,GT)-equilibrium. M2 is chosen large enough (in com-
parison to the payoffs in [0, 1]) such that for equilibrium play,
the player of Γ mostly cares about mixing up the players i
from which she chooses an action in an approximate uniform
fashion. M1 is chosen large enough to counterbalance the
errors in this approximate uniform mixing, and δ1 is chosen
small enough to recover an ϵ-Nash equilibrium at the end.

Let us show that a δ2-(CDT,GT)-equilibrium of Γ gives rise
to an ϵ-Nash equilibrium of G. For that, we first have to col-
lect some further observations about Γ.

Ex-ante Utility in Γ Let us describe the expected utility
U(µ) of a strategy µ = (µij)

n,m
i,j=1 ∈ ∆(AI) of Γ. Split it into

U(µ) =M2ϕ(µ)+ψ(µ) where the first part shall come from
the M2 · η(i[5]) and the second part from the ui[5](j[5]). The

4Note our shift in notation from the previous reduction proof.
Now, tuple i[5] may contain duplicates from the set of players [n].

latter is simply

ψ(µ) =
∑

(i[5],j[5]):η(i[5])=5

ui[5](j[5])

5∏
k=1

µikjk . (18)

For the former, denote with pi =
∑

j µij the total weight on
actions that came from player i of the original game. Con-
sider the stochastic experiment of drawing 5 items out of
the set of players [n] according to the probability distribution
p = (pi)i. Let χi ∈ {0, 1} be the random variable that de-
notes whether player i was drawn at least once in the stochas-
tic experiment. Then we can calculate the expected number
of distinct players that are drawn in the experiment as

ϕ(µ) = E[
∑
i∈[n]

χi] =
∑
i∈[n]

E[χi]

=
∑
i∈[n]

P(χi = 1) =
∑
i∈[n]

(
1− P(χi = 0)

)
= n−

∑
i∈[n]

(1− pi)
5 .

De Se Utility in Γ Next, we describe EUCDT,GT(aij | µ, I)
for an action aij at I with the help of Lemma 14.

EUCDT,GT(aij | µ, I) =
1

Fr(I)
∇ij U(µ) =

1

5
∇ij U(µ)

=
M2

5
· ∇ij ϕ(µ) +

1

5
∇ij ψ(µ)

=
M2

5
· 5(1− pi)

4

+
1

5

∑
(i[4],j[4]):

η(i[4])=4 ,i/∈i[4]

u(i,i[4])(j, j[4])

5∏
k=2

µikjk

(∗)
∈
[
M2(1− pi)

4,M2(1− pi)
4 +

1

5

(
n− 1

4

)]
⊆
[
M2(1− pi)

4,M2(1− pi)
4 + n4

]
.

In (∗), we used that all factors in the indexed sum lie in [0, 1].
Solution Recovery Let µ′ be a δ2-(CDT,GT)-equilibrium
of Γ. By Lemma 22, we can then compute a δ1-well-
supported (CDT,GT)-equilibrium µ of Γ from µ′. In the re-
maining part of the proof, we will only work with µ.
In equilibrium, every player gets to play similarly of-
ten Denote pi =

∑
j µij again. Take the two players

i∗ ∈ argmaxi pi and i∗ ∈ argmaxi pi that are played the
most and least often under µ. Choose any actions j∗, j∗ ∈ [m]
of players i∗ and i∗ respectively. Then we have

δ1 ≥ EUCDT,GT(ai∗j∗ | µ, I)− EUCDT,GT(ai∗j∗ | µ, I)
≥M2(1− pi∗)

4 −M2(1− pi∗)
4 − n4

≥M2 ·
[
(1− pi∗ + pi∗ − pi∗)

4 − (1− pi∗)
4
]
− n4

(†)
≥ M2 · (pi∗ − pi∗)

4 − n4 .



In (†) we first used the binomial theorem for the components
1 − pi∗ ≥ 0 and pi∗ − pi∗ ≥ 0 to split up the first exponent
term. Next, the term (1− pi∗)

4 canceled out and we dropped
three other positive terms. From this, we conclude

0 ≤ pi∗ − pi∗ ≤
∣∣∣∣ 4

√
δ1 + n4

M2

∣∣∣∣ = 1

M1
.

All in all we get that in a δ1-well-supported (CDT,GT)-
equilibrium – such as µ – the actions aij of each player i ∈ [n]
get played with summed probability

pi ∈
[
pi∗ , pi∗

]
⊆
[ 1
n
− 1

M1
,
1

n
+

1

M1

]
.

Recovering an ϵ-Nash equilibrium We now have every-
thing needed to complete the proof. Define the correspond-
ing strategy profile π = (πi·)

n
i=1 ∈×n

i=1 ∆
m−1 in G to µ as

πij :=
µij

pi
for each player i ∈ [n] and action j ∈ [m]. This is

well-defined because pi ≥ 1
n−

1
M1

> 0. We show that π is an
ϵ-Nash equilibrium of G by contradiction. Assume π is not
an ϵ-Nash equilibrium. Then, by Chen et al. [2006], it is also
not an ϵ-well-supported Nash equilibrium , that is, there ex-
ists a player i ∈ [n] with actions j, j′ ∈ [m] such that action
j′ is played with positive probability πij′ > 0 and such that
playing j yields her more than ϵ more utility than playing j′,
given that the other players play π−i·. Formally, this means

∑
(i[4],j[4]):

η(i[4])=4 ,i/∈i[4]

u(i,i[4])(j, j[4])

5∏
k=2

πikjk

> ϵ+
∑

(i[4],j[4]):

η(i[4])=4 ,i/∈i[4]

u(i,i[4])(j′, j[4])

5∏
k=2

πikjk .

(19)

Since 1
n − 1

M1
≤ pı̂ ≤ 1

n + 1
M1

for all ı̂ ∈ [n], we can derive

∑
(i[4],j[4]):

η(i[4])=4 ,i/∈i[4]

u(i,i[4])(j, j[4])

5∏
k=2

πikjk

=
∑

u(i,i[4])(j, j[4])

5∏
k=2

µikjk

pik

≤
∑

u(i,i[4])(j, j[4])

5∏
k=2

µikjk
1
n − 1

M1

=
( 1

1
n − 1

M1

)4
·
∑

u(i,i[4])(j, j[4])

5∏
k=2

µikjk ,

and analogously

∑
(i[4],j[4]):

η(i[4])=4 ,i/∈i[4]

u(i,i[4])(j′, j[4])

5∏
k=2

πikjk

≥
∑

u(i,i[4])(j′, j[4])

5∏
k=2

µikjk
1
n + 1

M1

=
( 1

1
n + 1

M1

)4
·
∑

u(i,i[4])(j′, j[4])

5∏
k=2

µikjk .

Observe the connection to the previously defined function ψ
here: ∑

(i[4],j[4]):

η(i[4])=4 ,i/∈i[4]

u(i,i[4])(j, j[4])

5∏
k=2

µikjk = ∇ij ψ(µ) ,

and ∑
(i[4],j[4]):

η(i[4])=4 ,i/∈i[4]

u(i,i[4])(j′, j[4])

5∏
k=2

µikjk = ∇ij′ ψ(µ) .

Inserting the bounds into (19) yields( 1
1
n − 1

M1

)4
∇ij ψ(µ) > ϵ+

( 1
1
n + 1

M1

)4
∇ij′ ψ(µ)

= ϵ+
( 1

1
n − 1

M1

)4
∇ij′ ψ(µ)

−
[( 1

1
n − 1

M1

)4
−
( 1

1
n + 1

M1

)4]
· ∇ij′ ψ(µ)

= ϵ+
( 1

1
n − 1

M1

)4
∇ij′ ψ(µ)

− n4M4
1

( 1

(M1 − n)4
− 1

(M1 + n)4

)
︸ ︷︷ ︸

Denote this term as (†)

·∇ij′ ψ(µ)

= . . . to be continued under (◦) .

We have (†) ≥ 0 as well as

(†) = (M1 + n)4 − (M1 − n)4

(M1 − n)4(M1 + n)4

=
8M3

1n+ 8M1n
3

(M1 − n)4(M1 + n)4

≤ 16M3
1n

(M1 − n)4(M1 + n)4

≤ 16M3
1n

(M1 − M1

2 )4(M1 +
M1

2 )4

=
16
34

28

M3
1n

M8
1

≤ 100
n

M5
1

.



Moreover, we have

0 ≤ ∇ij′ ψ(µ) ≤
∑

(i[4],j[4]):

η(i[4])=4 ,i/∈i[4]

1 · 1 ≤ (nm)4 .

Therefore, we can continue the inequality chain at (◦) with

(◦) ≥ ϵ+
( 1

1
n − 1

M1

)4
∇ij′ ψ(µ)− n4M4

1 · 100 n

M5
1

· (nm)4

= ϵ+
( 1

1
n − 1

M1

)4
∇ij′ ψ(µ)− 100

n9m4

M1

= ϵ+
( 1

1
n − 1

M1

)4
∇ij′ ψ(µ)−

ϵ

2
,

where we inserted for the value of M1. All in all, we derived( 1
1
n − 1

M1

)4
∇ij ψ(µ) >

( 1
1
n − 1

M1

)4
∇ij′ ψ(µ) +

ϵ

2
.

Thus, we can conclude with our previous observations about
the de se utility in Γ that

EUCDT,GT(aij | µ, I) =
M2

5
· ∇ij ϕ(µ) +

1

5
∇ij ψ(µ)

=
M2

5
· 5(1− pi)

4 +
1

5
∇ij ψ(µ)

=
M2

5
· ∇ij′ ϕ(µ) +

1

5
∇ij ψ(µ)

>
M2

5
· ∇ij′ ϕ(µ) +

1

5
·
[
∇ij′ ψ(µ) +

( 1
n
− 1

M1

)4
· ϵ
2

]
=
M2

5
· ∇ij′ ϕ(µ) +

1

5
∇ij′ ψ(µ) + δ1

= EUCDT,GT(aij′ | µ, I) + δ1 .

Hence, we derived that an action (i, j′) of Γ has positive play
probability

µij′ = πij′ · pi ≥ πij′ · (
1

n
− 1

M2
) > 0 ,

under µ while simultaneously being more than δ1 dominated
by another action (i, j). This contradicts µ being a δ1-well-
supported (CDT,GT)-equilibrium. The contradiction com-
pletes our proof that π is an ϵ-Nash equilibrium.

H.5 Proof of Theorem 3
Theorem. The following problems are all NP-hard. Unless
NP = ZPP, there is also no FPTAS for these problems.

(1a.) Given Γ and t ∈ Q, is there a (CDT,GT)-equilibrium of
Γ with ex-ante utility ≥ t?

(1b.) Given Γ, an info set I of Γ and t ∈ Q, is there a
(CDT,GT)-equilibrium µ such that Fr(I | µ) > 0, and
such that the player has a (CDT,GT)-expected utility ≥ t
upon reaching I?

(1c.) Given Γ, an info set I of Γ and t ∈ Q, is there a strategy
µ of Γ such that Fr(I | µ) > 0, and such that the player
has a (CDT,GT)-expected utility ≥ t upon reaching I?

(2a.) Given Γ and t ∈ Q, is there an (EDT,GDH)-equilibrium
of Γ with ex-ante utility ≥ t?

(2b.) Given Γ, an info set I of Γ and t ∈ Q, is there an
(EDT,GDH)-equilibrium µ such that P(I | µ) > 0, and
such that the player has an (EDT,GDH)-expected utility
≥ t upon reaching I?

(2c.) Given Γ, an info set I of Γ and t ∈ Q, is there a strategy
µ of Γ such that P(I | µ) > 0, and such that the player
has an (EDT,GDH)-expected utility ≥ t upon reaching
I?

(3a.) Given Γ and t ∈ Q, do all (EDT,GDH)-equilibria of Γ
have ex-ante utility ≥ t?

(3b.) Given Γ, an info set I of Γ and t ∈ Q, do all
(EDT,GDH)-equilibria µ with P(I | µ) > 0 yield the
player an (EDT,GDH)-expected utility ≥ t upon reach-
ing I?

We reduce all those decision problems from the problem in
Proposition 4, which we will henceforth call EXANTEOPT-
D.

First note that any single-player extensive-form game with
imperfect recall Γ has an ex-ante optimal strategy since the
maximization problem (1) is about a continuous polynomial
function over a compact domain. Moreover, observe that
(Γ, t) is a yes instance for EXANTEOPT-D (by definition)
if and only if there is a strategy µ in Γ with U(µ) ≥ t if
and only if there is an ex-ante optimal strategy µ∗ in Γ with
U(µ∗) ≥ t.

(1a.) and (2a.):
Let (Γ, t) be an instance for EXANTEOPT-D. Without trans-
forming, we can choose (Γ, t) as the instance to the prob-
lems (1a.) and (2a.). Then, it will be a yes instance of (-
a.) if and only if there is a (CDT,GT)-equilbrium or, resp.,
(EDT,GDH)-equilibrium in Γ with ex-ante utility ≥ t if and
only if (by Lemma 17) there is an ex-ante optimal strategy in
Γ with with ex-ante utility ≥ t if and only if (by the comment
above) (Γ, t) is a yes instance for EXANTEOPT-D.

(1b.), (1c.), (2b.), and (2c.):
Let (Γ, t) be an instance for EXANTEOPT-D. Let us refer to
the root of Γ with h0. We construct a new game Γ′ by adding
a new artificial game start: Copy the game tree of Γ. Add a
new node h−1 to it which shall represent root of Γ′. Connect
h−1 to h0 by one edge, called action a−1, and assign h−1 to
a new info set I−1 that is added to I∗. The corresponding
instance shall be (Γ′, I−1, t).

Observe that any strategy µ for Γ corresponds to a strategy
µ′ in Γ′ that behaves like µ at info sets I that were inherited
from Γ and that takes the only viable action a−1 at info set
I−1 with a 100% certainty. Moreover, info set I−1 has a visit
frequency and reach probability of 1 for any strategy µ′ of
Γ′ because they occur in the history of any terminal node ex-
actly once in the beginning. Most crucially, we also get that
the (CDT,GT)-expected utility (resp. (EDT,GDH)-expected
utility) of µ′ upon reaching info set I−1 is equal to the ex-
ante expected utility of µ′ in Γ′ and of corresponding strategy
µ in Γ.

We obtain:
· (Γ′, I−1, t) is a yes instance for problem (1b.) (resp. (2b.))
=⇒ (Γ′, I−1, t) it is a yes instance for problem (1c.) (resp.

(2c.))
=⇒ there is a strategy µ′ in Γ′ with (CDT,GT)-expected



utility (resp. (EDT,GDH)-expected utility) ≥ t upon
reaching I−1

=⇒ corresponding strategy µ in Γ has ex-ante utility ≥ t

=⇒ (Γ, t) is a yes instance for EXANTEOPT-D.
and for the other direction:

· (Γ, t) is a yes instance for EXANTEOPT-D
=⇒ there exists an ex-ante optimal strategy µ∗ of (Γ, t) with

ex-ante utility ≥ t

=⇒ corresponding strategy (µ∗)′ in Γ′ is ex-ante optimal
for Γ′, and it has (CDT,GT)-expected utility (resp.
(EDT,GDH)-expected utility) ≥ t upon reaching I−1

=⇒ there exists a (CDT,GT)-equilibrium in Γ′ (resp.
(EDT,GDH)-equilibrium) with (CDT,GT)-expected util-
ity (resp. (EDT,GDH)-expected utility) ≥ t upon reach-
ing I−1

=⇒ (Γ′, I−1, t) is a yes instance for problem (1b.) (resp.
(2b.))

=⇒ (Γ′, I−1, t) is a yes instance for problem (1c.) (resp.
(2c.)).

which completes the reduction. Note that G′ has one addi-
tional info set and tree depth in comparison to G.

(3a.) and (3b.):
For (3a.), consider the reductions for (2a.) again and assume
the starting instance (Γ, t) of EXANTEOPT-D has one info
set only. By Proposition 4 we know that even with such in-
stances EXANTEOPT-D is NP-hard and conditionally inap-
proximable. But an (EDT,GDH)-equilibrium of such an in-
stance must be an ex-ante optimal strategy (seen by Lemma
15). Therefore, each (EDT,GDH)-equilibrium of Γ must have
the same (ex-ante optimal) value in ex-ante utility. Thus,
deciding whether all (EDT,GDH)-equilibrium exceeds a tar-
get ex-ante utility (problem (3a.)) coincides with decid-
ing whether one (EDT,GDH)-equilibrium does that (problem
(2a.)).

An analogous argument holds for (3b.) by considering the
reductions for (2b.) for starting instances (Γ, t) with only one
info set. There, we observe that (EDT,GDH)-equilibria of Γ′

correspond exactly to the ex-ante optimal strategies in Γ, and
must therefore all promise the same (EDT,GDH)-expected
utility upon reaching I−1.
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