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ABSTRACT
We investigate optimal decision making under imperfect recall, that

is, when the agent(s) knows that it will forget information it once

held before. An example is the absentminded driver game, as well as

team games in which the members exhibit limited communication

capabilities. In the framework of extensive-form games with imper-

fect recall, we analyze the computational complexities of finding

equilibria in multiplayer settings across three different solution

concepts: Nash, multiselves based on evidential decision theory

(EDT), and multiselves based on causal decision theory (CDT). We

are interested in both exact and approximate solution computation.

As special cases, we consider (1) single-player games, (2) two-player

zero-sum games and relationships to maximin values, and (3) games

without exogenous stochasticity (chance nodes). We relate these

problems to the complexity classes P, PPAD, PLS, ΣP
2
, ∃R, and ∃∀R.
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1 INTRODUCTION
In game theory, it is common to restrict attention to games of per-
fect recall, that is, games in which no player ever forgets anything.

At first, it seems that this assumption is even better motivated for

AI agents than for human agents: humans forget things, but AI

does not have to. However, we argue this view is mistaken: there

are often reasons to design AI agents to forget, or to structure

them so that they can be modeled as forgetful. Moreover, such

forgetting-by-design follows predictable rules and is thereby eas-

ier to model formally than idiosyncratic human forgetting. Thus,

games of imperfect recall are receiving renewed attention from AI

researchers.

Imperfect-recall games are already being used for state-of-the-art

abstraction algorithms of larger games of perfect recall [2, 15, 29].

The idea is that by forgetting unimportant aspects of the past, the

AI can afford to conduct equilibrium-approximation computations

with a gamemodel that has amore refined abstraction of the present.

Indeed, imperfect-recall abstractions were a key component in the

first superhuman AIs in no-limit Texas hold’em poker [3, 4].

Imperfect recall also naturally models settings in which forget-

ting is deliberate for other reasons, such as privacy of sensitive data

[7, 33].

It can also model teams of agents with common goals and limited

ability to communicate. Each team, represented by one agent with

imperfect recall, is then striving for some notion of optimality

among team members [5, 11, 28, 32]. Highly distributed agents are

similarly well-described by imperfect recall: such an agent may

take an action at one node based on information at that node, and

then need to take another action at a second node without having

learned yet what happened at the first node, so that effectively the
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(b) Extended absent-
minded driver.

Figure 1: Games with imperfect recall. P1’s (▲) utility payoffs
are labeled on each terminal node. If P2 (▼) is present, the
game is zero sum. Infosets are joined by dotted lines.

distributed agent has forgotten what it knew before. Finally, a single

agent can be instantiated multiple times in the same environment,

where one copy does not know what another copy just knew [8].

Perfect recall is a common technical assumption in game theory

because it implies many simplifying properties, such as polynomial-

time solvability of single-player and two-player zero-sum settings

[19]. In multi-player settings with imperfect recall, Nash equilibria

may not exist anymore [30]; in fact, we show that deciding the

existence is computationally hard. To give an illustrative example,

consider a variation of Wichardt’s game in Figure 1a, which we call

the forgetful (soccer) penalty shoot-out. The shooter (P1) decides

whether to shoot left or right, once before the whistle, and once

again right before kicking the ball. At the second decision point,

P1 has forgotten which direction they chose previously. P1 only

succeeds in shooting in any direction if she chooses that direction

at both decision points. Upon succeeding, it becomes a matching

pennies game with the goalkeeper (P2) who chooses to jump left or

right to block the ball. In similar reasoning to matching pennies, in

a potential Nash equilibrium, none of the two players can play one

side more often than the other. However, if both players mix 50/50

at each infoset, this is not a Nash equilibrium either: P1 is not best

responding to P2 because she could deterministically shoot towards

one side instead to avoid miscoordination with herself altogether,

and achieve a payoff of 1 instead of 0.

Indeed, many of our intuitions fail for imperfect-recall games—

to the point that a significant body of work in philosophy and

game theory addresses conceptual questions about probabilistic

reasoning and decision making in imperfect-recall games, such as

in the Sleeping Beauty problem [10] or the absentminded driver

game of Figure 1b [25]. While this literature continues to this day,

from it, several distinct and coherent ways to approach games of

imperfect recall have emerged. We will discuss these in detail in

Section 4.

In this paper, we study the computational complexity imperfect-

recall extensive-form games. We focus on three solution concepts:

(1) Nash equilibria where players play mutual best response strate-

gies (or simply optimal strategies in single-player domains), (2)

multiselves equilibria based on evidential decision theory, in which

each infoset plays a best-response action to all other infosets and

players, and (3) multiselves equilibria based on causal decision the-

ory, in which each infoset plays a Karush-Kuhn-Tucker (KKT) point
action for the current strategy profile. The latter two are relaxations

of the first. Our results for these are summarized in Table 1. Last

but not least, Section 6 shows that games with imperfect recall stay

computationally equally hard even in the absence of exogenous

stochasticity (i.e., chance nodes).

2 IMPERFECT-RECALL GAMES
We first define extensive-form games, allowing for imperfect recall.

The concepts we use in doing so are standard; for more detail and

background, see, e.g., Fudenberg and Tirole [14] and Piccione and

Rubinstein [25]. In this section, we follow the exposition of Tewolde

et al. [27], with the addition of introducing multi-player notation.

Definition 1. An extensive-form game with imperfect recall,
denoted by Γ, consists of:
(1) A rooted tree, with nodesH and where the edges are labeled with

actions. The game starts at the root node ℎ0 and finishes at a leaf
node, also called terminal node. We denote the terminal nodes in
H as Z and the set of actions available at a nonterminal node
ℎ ∈ H \ Z as 𝐴ℎ .

(2) A set of 𝑁 + 1 players N ∪ {𝑐}, for 𝑁 ∈ N, and an assignment
of nonterminal nodes to a player that shall choose an action at
that node. Player 𝑐 stands for chance and represents exogenous
stochasticity that chooses an action. With H (𝑖 ) we denote all
nodes associated to player 𝑖 ∈ N .

(3) A fixed distribution P(𝑐 ) (· | ℎ) over 𝐴ℎ for each chance node
ℎ ∈ H (𝑐 ) , with which an action is determined at ℎ.

(4) For each 𝑖 ∈ N , a utility function𝑢 (𝑖 )
: Z → R that specifies the

payoff that player 𝑖 receives from finishing the game at a terminal
node.

(5) For each 𝑖 ∈ N , a partitionH (𝑖 ) = ⊔𝐼 ∈I (𝑖 ) 𝐼 of player 𝑖’s decision
nodes into information sets ( infosets). We require 𝐴ℎ = 𝐴ℎ′ for
all nodes ℎ,ℎ′ of the same infoset. Therefore, infoset 𝐼 has a well-
defined action set 𝐴𝐼 .

Imperfect Recall. Nodes of the same infoset are assumed to be

indistinguishable to the player during the game (even though the

player is always aware of the full game structure). This may hap-

pen even in perfect-recall games due to imperfect information, that
is, when it is unobservable to the player what another player (or

chance) has played. This effect is present in Figure 1a for P2. In-

foset 𝐼2 of P1, on the other hand, exhibits imperfect recall because
once arriving there, the player has forgotten information about the

history of play that she once held when leaving 𝐼1, namely whether

she chose left or right back then. In Figure 1b, the player is unable

to recall whether she has been in the same situation before or not.

This phenomenon is a special kind of imperfect recall called ab-

sentmindedness.The degree of absentmindedness of an infoset shall

be defined as the maximum number of nodes of the same game

trajectory that belong to that infoset. In this example, it is 3. The

branching factor of a game is the maximum number of actions at

any infoset.

In contrast to that, games with perfect recall have every infoset

reflect that the player remembers all her earlier actions. We note

that any nodeℎ ∈ H uniquely corresponds to a history path hist(ℎ)
in the game tree, consisting of alternating nodes and actions from



Multi-player
Nash (D) EDT (D) CDT (S)

exact
∃R-hard and in ∃∀R

—

(Thms. 1 & 3)

1/exp

1/poly

ΣP
2
-complete

(Thms. 2 and 4)

PPAD-complete

(Thm. 6)

Single-player
Optimal (D) EDT (S) CDT (S)

exact
∃R-complete

— —

[16]

1/exp
NP-complete PLS-complete CLS-complete

[19 (Thm. 5
∗
) [27]

1/poly 27] P (Cor. 22
∗
) P (Cor. 17)

Table 1: Summary of complexity results. New results from this paper are shown with a light green background. (S) stands for
search problem, which is when we ask for a solution strategy profile. In multi-player, (D) stands for deciding whether such an
equilibrium even exists. In single-player, Optimal (D) decides whether some target utility can be achieved. Citations are given
for results found in the literature. All of our hardness results even hold for highly restricted game instances. ∗: The number of
actions per infoset is constant for these results. ‘—’: No results exist for these settings to our knowledge. Indeed, there exist
single-player games in which every exact EDT or CDT equilibrium involves irrational values [27], so it is not even clear how to
define these search problems.

root ℎ0 to ℎ. Let exp(𝑖 ) (ℎ) be the experienced sequence of infosets

visited and actions taken by player 𝑖 on the path hist(ℎ). Then,
formally, a game has perfect recall if for all player 𝑖 ∈ N , all infosets

𝐼 ∈ I (𝑖 )
, and all nodes ℎ,ℎ′ ∈ 𝐼 , we have exp(𝑖 ) (ℎ) = exp

(𝑖 ) (ℎ′).

Strategies. Let Δ(𝐴𝐼 ) denote the set of probability distributions

over the actions in𝐴𝐼 . These will also be referred to asmixed actions.
A (behavioral) strategy 𝜇 (𝑖 ) : I (𝑖 ) → ⊔𝐼 ∈I (𝑖 )Δ(𝐴𝐼 ) of a strategic
player 𝑖 assigns to each of her infosets 𝐼 a probability distribution

𝜇 (𝑖 ) (· | 𝐼 ) ∈ Δ(𝐴𝐼 ). Upon reaching 𝐼 , the player draws an action

randomly from 𝜇 (𝑖 ) (· | 𝐼 ). A pure strategy maps (deterministically)

to ⊔𝐼 ∈I (𝑖 )𝐴𝐼
1
. A strategy profile, or profile, 𝜇 = (𝜇 (𝑖 ) )𝑖∈N specifies

a behavioral strategy for each player. We may write

(
𝜇 (𝑖 ) , 𝜇 (−𝑖 )

)
to emphasize the influence of 𝑖 ∈ N on 𝜇. Denote the strategy set

of player 𝑖 ∈ N with S (𝑖 )
, and the set of profiles with S.

For a computational analysis, we identify a mixed action set

Δ(𝐴𝐼 ) with the simplex Δ |𝐴𝐼 |−1
, where Δ𝑛−1

:= {𝑥 ∈ R𝑛 : 𝑥𝑘 ≥
0∀𝑘 ,∑𝑛

𝑘=1
𝑥𝑘 = 1}. Therefore, the strategy sets are Cartesian prod-

ucts of simplices:

S ≡ >
𝑖∈N

>
𝐼 ∈I (𝑖 ) Δ |𝐴𝐼 |−1

and S (𝑖 ) ≡ >
𝐼 ∈I (𝑖 ) Δ |𝐴𝐼 |−1

.

Reach Probabilities and Utilities. Let P( ¯ℎ | 𝜇, ℎ) be the probability
of reaching node

¯ℎ ∈ H given that the current game state is at

ℎ ∈ H and that the players are playing profile 𝜇. It evaluates as 0 if

ℎ ∉ hist( ¯ℎ), and as the product of probabilities of the actions on the

path from ℎ to
¯ℎ otherwise. The expected utility payoff of player

𝑖 ∈ N at node ℎ ∈ H \Z if profile 𝜇 is being followed henceforth is

𝑈 (𝑖 ) (𝜇 | ℎ) :=
∑
𝑧∈Z P(𝑧 | 𝜇, ℎ) · 𝑢 (𝑖 ) (𝑧). We overload notation by

defining P(ℎ | 𝜇) := P(ℎ | 𝜇, ℎ0) for root ℎ0 of Γ, and the function

𝑈 (𝑖 )
that maps a profile 𝜇 to its expected utility from game start

𝑈 (𝑖 ) (𝜇) := 𝑈 (𝑖 ) (𝜇 | ℎ0). In Figure 1b, that is𝑈 (1) (𝜇) = 6𝑐2𝑒 .

Polynomials. Each summand P(𝑧 | 𝜇, ℎ) · 𝑢 (𝑖 ) (𝑧) in 𝑈 (𝑖 ) (𝜇 | ℎ)
is a monomial in 𝜇 times a scalar, and the expected utility function

1Mixed strategies will not be the focus of this paper. A mixed strategy is a probability

distribution over all pure strategies. In the presence of imperfect recall, mixed strategies

are not realization-equivalent to behavioral strategies [20]. Mixed strategies require

the agent to coordinate her actions across infosets (e.g., access to a correlation device);

as this would imply a form of memory, it does not fit the motivation of this paper.

𝑈 (𝑖 )
is a polynomial function in the profile 𝜇. All these polynomi-

als 𝑈 (𝑖 )
can be constructed in polynomial time (polytime) in the

encoding size of Γ.
Any collection of 𝑁 multivariate polynomials

𝑝 (𝑖 ) :

>𝑁
𝑖=1

>ℓ (𝑖 )
𝑗=1
R
𝑚

(𝑖 )
𝑗 → R is representable as an 𝑁 -player

game Γ with imperfect recall such that its expected utility functions

satisfy𝑈 (𝑖 ) (𝜇) = 𝑝 (𝑖 ) (𝜇) on>𝑁
𝑖=1

>ℓ (𝑖 )
𝑗=1
R
𝑚

(𝑖 )
𝑗
. This can be found

in the appendix.

Approximate Solutions. The solution concepts we investigate will
have a definition of the abstract form “Strategy 𝜇 is a solution if

for all 𝑦 ∈ 𝑌 we have 𝑓 (𝜇) ≥ 𝑓𝜇 (𝑦)” for some set 𝑌 and some

(utility) functions 𝑓 and 𝑓𝜇 . Then, we call a strategy 𝜇 an 𝜖-solution

if ∀𝑦 ∈ 𝑌 : 𝑓 (𝜇) ≥ 𝑓𝜇 (𝑦) − 𝜖 .

Computational Considerations. In this paper, we discuss decision

and search problems. The former ask for a yes/no answer; the latter

ask for a solution point. The input to these computational problems

may be a game Γ, a precision parameter 𝜖 > 0, and/or a target value

𝑡 . Values in Γ, as well as 𝜖 and 𝑡 are assumed to be rational. We

assume that a game Γ is represented by its game tree structure,

which has size Θ( |H |), and by a binary encoding of its chance node
probabilities and its utility payoffs. If there is a target 𝑡 , then it shall

be given in binary as well.

If there is no precision parameter 𝜖 , then we are dealing with

problems involving exact solutions. These problems are usually

beyond NP because equilibria may require irrational probabilities

and may therefore not be representable in finite bit length. In fact,

Tewolde et al. give a simple single-player example in which the

unique equilibrium takes on irrational values. That is, in part, why

we will also be interested in approximations up to a small precision

error 𝜖 > 0.

Remark 2. By default, 𝜖 > 0 will be given in binary, in which case
we require inverse-exponential (1/exp) precision.

Occasionally, we may instead require inverse-polynomial (1/poly)
precision, which is when 𝜖 is given in unary, or constant precision,

which is when 𝜖 is fixed to a constant > 0. Naturally, 1/exp precision

is hardest to achieve.



Complexity Classes. We now give short descriptions of the com-

plexity classes, and refer to the appendix for details and references.

The classes are listed in roughly increasing order of hardness. P:
Decision problems solvable in polytime. CLS: Search problems in

both PLS and PPAD. PLS: Search problems expressible as local opti-

mization over a combinatorial search space. PPAD: Search problems

expressible as fixed-point problems, e.g., Nash equilibria. NP: De-
cision problems where solutions can be verified in polytime. ΣP

2
:

Decision problems where solutions can be verified in polytime with

access to a SAT oracle. ∃R and ∃∀R are analogues of NP and ΣP
2

respectively for real-valued variables.

3 NASH EQUILIBRIA AND OPTIMAL PLAY
In this section, we present our computational results for the classic

and most important solution concept in game theory – the Nash

equilibrium [23].

Definition 3. A profile 𝜇 is said to be a Nash equilibrium (in
behavioral strategies) for game Γ if for all player 𝑖 ∈ N , and all
alternative strategies 𝜋 (𝑖 ) ∈ S (𝑖 ) , we have 𝑈 (𝑖 ) (𝜇 (𝑖 ) , 𝜇 (−𝑖 ) ) ≥
𝑈 (𝑖 ) (𝜋 (𝑖 ) , 𝜇 (−𝑖 ) ).

In a Nash equilibrium, no player has any utility incentives to

deviate unilaterally to another strategy. Nash showed that any fi-

nite perfect-recall game admits at least one Nash equilibrium. In

contrast, some finite imperfect-recall games have no Nash equilib-

rium, as discussed in Section 1. If there is only one single player,

however, finding a Nash equilibrium reduces to maximizing a poly-

nomial utility function over a compact strategy space. Such a solu-

tion is guaranteed to exist, and its value is unique. Therefore, one

may ask instead whether some target value 𝑡 can be achieved in

a given game. In Figure 1b, this would result in the ∃R-sentence
∃𝑒, 𝑐 : 6𝑐2𝑒 ≥ 𝑡 ∧ 𝑐 ≥ 0 ∧ 𝑒 ≥ 0 ∧ 𝑐 + 𝑒 = 1. This is an easier task

than finding an optimal strategy. Nonetheless:

Proposition 4 (16). Deciding whether a single-player game with
imperfect recall admits a strategy with value ≥ 𝑡 is ∃R-complete.

For approximation, consider problem Opt-D that asks to dis-

tinguish between whether ∃𝜇 ∈ 𝑆 : 𝑈 (1) (𝜇) ≥ 𝑡 and whether

∀𝜇 ∈ 𝑆 : 𝑈 (1) (𝜇) ≤ 𝑡 − 𝜖 .

Proposition 5 (19; 27). Opt-D is NP-complete.

Technically, Koller and Megiddo establish hardness for the ex-
act decision problem, but their proof also implies – via the PCP

theorem [17] – NP-hardness for absolute constant 𝜖 < 1/8.

3.1 Two-Player Zero-Sum Games
A two-player zero-sum (2p0s) game is a two-player game where

𝑈 (2) = −𝑈 (1)
. In that case utilities can be given in terms of P1, and

P2 can equivalently minimize that utility.

Koller and Megiddo [19] prove ΣP
2
-completeness of deciding in

2p0s games with imperfect recall whether the max-min value in

pure-strategy play exceeds some utility target ≥ 𝑡 . We are interested

in behavioral strategies instead:

Definition 6. In a 2p0s game Γ, the (behavioral) max-min value

and min-max value are defined as

¯

𝑈 := max𝜇 (1) ∈𝑆 (1) min𝜇 (2) ∈𝑆 (2) 𝑈
(1) (𝜇 (1) , 𝜇 (2) ),

𝑈 := min𝜇 (2) ∈𝑆 (2) max𝜇 (1) ∈𝑆 (1) 𝑈
(1) (𝜇 (1) , 𝜇 (2) ).

Gimbert et al. [16] prove that deciding

¯

𝑈 ≥ 𝑡 is in ∃∀R and is

hard for ∃R. For approximation, we have:

Lemma 7 (32). It is ΣP
2
-complete to distinguish

¯

𝑈 ≥ 0 from
¯

𝑈 ≤ −𝜖
in 2p0s games with imperfect recall. Hardness holds even with no
absentmindedness and 1/poly precision.

For 2p0s games Γ, there is a tight connection between the ex-

istence of Nash equilibria and the min-max and max-min values.

Define the duality gap of Γ as the difference Δ := 𝑈 −
¯

𝑈 ≥ 0. In

Figure 1a the duality gap is 1 − 0 = 1.

Proposition 8. Let Γ be a 2p0s game with imperfect recall. If
Δ ≤ 𝜖 then Γ admits an 𝜖-Nash equilibrium. Conversely, if Γ admits
an 𝜖-Nash equilibrium, then Δ ≤ 2𝜖 .

In particular, there is an equivalence between Nash equilibrium

existence and vanishing duality gap. This result is not specific to

behavioral strategies in imperfect-recall games; it holds for any

family of strategies in any 2p0s game.

3.2 Deciding Nash Equilibrium Existence
We find the following for multi-player settings.

Theorem 1. Deciding if a game with imperfect recall admits a
Nash equilibrium is ∃R-hard and in ∃∀R. Hardness holds even for
2p0s games where on player has a degree of absentmindedness of 4

and the other player has perfect recall.

We give a high-level description of the hardness reduction via

Proposition 4: Its game instances Γ will be played by P1 and will

form, together with the game of Figure 1a, a subgame Γ̃ as illustrated
in the appendix. Then, a Nash equilibrium exists if and only if Γ̃
will never be reached (by P2) if and only if the target value can be

achieved in Γ. Similar reasoning works for approximation. Consider

problem Nash-D that asks to distinguish between whether an exact

Nash equilibrium exists or whether no 𝜖-Nash equilibrium exists.

Theorem 2. Nash-D is ΣP
2
-complete. Hardness holds for 2p0s

games with no absentmindedness and 1/poly precision.

Corollary 9. It is ΣP
2
-complete to distinguishΔ = 0 fromΔ ≥ 𝜖 in

2p0s games. Hardness holds for 2p0s games with no absentmindedness
and 1/poly precision.

In a later section, we will show hardness for deciding existence of

EDT equilibria. The results in that section will also imply hardness

for Nash-D, with different restrictions.

3.3 A Naïve Algorithm
We now give a naïve algorithm of the problem Nash-D. For game

Γ, let |Γ | denote its representation size, 𝑁 its number of players, 𝐿

its maximum number of infosets per player, and 𝑀 its maximum

number of actions per infoset.

Proposition 10. Nash-D is solvable in
(
|Γ | + log

1

𝜖

)O(𝑁 2𝐿2𝑀2 )

time.
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Figure 2: A single-player game with imperfect recall where
miscoordinating actions with yourself is punished most.

In fact, our algorithm will find an 𝜖-Nash equilibrium when an

exact Nash equilibrium exists. The algorithm is simple, and rough

bounds are provided only to highlight exponential dependencies. It

will aid us in Theorem 5. The idea is to iteratively subdivide the strat-

egy space, and to continuously decide with first-order-of-the-reals

solvers whether a Nash equilibrium exists in this smaller region

within exponential time. The algorithm is polytime if 𝑁, 𝐿, and𝑀

are constants. Such bounds do not restrict the size of the game tree

since the degree of absentmindedness can grow arbitrarily.

4 INTRODUCING MULTISELVES EQUILIBRIA
Section 3 shows strong obstacles to finding Nash equilibria in games

with imperfect recall. In light of these limitations, we relax the space

of solutions and turn to themultiselves approach (cf. the agent-form
[20]), which we review in this section. This approach argues that,

whenever a player finds herself in an infoset, she has no influence

over which actions she chooses at other infosets. Therefore, at a

multiselves equilibrium 𝜇, each player will play the best mixed

action at each of their infosets, assuming that they themselves play

according to 𝜇 at other infosets and assuming all other players also

play according to 𝜇.

Consider Figure 2. The optimal strategy is to play (𝑟1, 𝑟2). This is
also a multiselves equilibrium. However, (𝑙1, 𝑙2) is also a multiselves

equilibrium, because if the player is at the top-level infoset 𝐼1 and

assumes that she will follow left at the bottom-level infoset 𝐼2, then

it is best for her to go left now. On the other hand, if the player is

at 𝐼2 and assumes that she played left at 𝐼1, then it is best for her to

play left now.

Multiselves equilibria can be arbitrarily bad in payoff in com-

parison to optimal strategies and Nash equilibria – an analogous

phenomenon is well-known for team games, as we note in the ap-

pendix. In games with absentmindedness it becomes controversial

how to apply the multiselves idea. Specifically, how should a player

reason about implications of a choice at the current decision point

for her action choices at past and future decision points within
the same infoset, and—as a consequence—compute incentives to

deviate? That is, in considering deviating, will the player assume

they would perform the same deviation at other nodes in the same

infoset, or that the deviation is a one-time-only event? We will han-

dle this question using two well-motivated
2
decision theories that

2
Among other aspects, the literature makes clear which decision theories (in com-

bination with certain approaches to belief formation) avoid being Dutch-booked

(money-pumped) [1, 24, 25].

correspond to these two cases: evidential decision theory and causal

decision theory. We will see that Nash equilibria are multiselves

equilibria under both decision theories.

4.1 Evidential Decision Theory (EDT)
Suppose a game Γ is played with profile 𝜇, and a player 𝑖 arrives

in one of her infosets 𝐼 ∈ I (𝑖 )
. EDT postulates that if that player

deviates to a mixed action 𝛼 ∈ Δ(𝐴𝐼 ) at the current node, then she

will have also deviated to 𝛼 whenever she arrived in 𝐼 in the past,

and she will also deviate to 𝛼 whenever she arrives in 𝐼 again in the

future. This is because EDT argues that the choice to play 𝛼 now is

evidence for the player playing the same 𝛼 in the past and future.

We denote the behavioral strategy that results from an EDT

deviation as 𝜇
(𝑖 )
𝐼 ↦→𝛼

. It plays according to 𝜇 (𝑖 ) at every infoset except

for 𝐼 ∈ I (𝑖 )
where it plays according to 𝛼 ∈ Δ(𝐴𝐼 ).

Definition 11. We call 𝜇 an EDT equilibrium for game Γ if for
all players 𝑖 ∈ N , all her infosets 𝐼 ∈ I (𝑖 ) , and all mixed actions
𝛼 ∈ Δ(𝐴𝐼 ), we have𝑈 (𝑖 ) (𝜇) ≥ 𝑈 (𝑖 ) (𝜇 (𝑖 )

𝐼 ↦→𝛼
, 𝜇 (−𝑖 ) ).

In an EDT equilibrium, no player has an incentive to deviate at an

infoset in an EDT fashion to another mixed action. This is because

the right hand side of the inequality represents the expected ex-ante
utility of such an EDT deviation. We discuss the ex-ante perspective

on multiselves equilibria in the appendix. The following result is

known:

Proposition 12 (27). Unless NP = ZPP, finding an 𝜖-EDT equi-
librium in a single-player game for 1/poly precision is not in P.

4.2 Causal Decision Theory (CDT)
Say, again, game Γ is played with profile 𝜇, and a player 𝑖 arrives in

one of her infosets 𝐼 ∈ I (𝑖 )
. Then CDT postulates that the player

can take an action 𝛼 ∈ Δ(𝐴𝐼 ) at the current node without violating
that she has been playing according to 𝜇 (𝑖 ) at past arrivals in 𝐼 ,

or that she will be playing according to 𝜇 (𝑖 ) at future arrivals in 𝐼 .

This is in addition to assuming that all other players follow 𝜇 (−𝑖 )

as usual. The intuition behind CDT is that the player’s choice to

deviate from 𝜇 (𝑖 ) at the current node does not cause any change in

her behavior at any other node of the same infoset 𝐼 .

For node ℎ ∈ H (𝑖 )
and pure action 𝑎 ∈ 𝐴ℎ , let ℎ𝑎 denote the

child node reached if player 𝑖 plays 𝑎 at ℎ. Consequently, 𝑈 (𝑖 ) (𝜇 |
ℎ𝑎) is the expected utility of player 𝑖 from being at ℎ, playing 𝑎,

and everyone following profile 𝜇 afterwards. When at an infoset

𝐼 ∈ I (𝑖 )
, the player does not know at which node of 𝐼 she currently

is. Therefore, when computing her utility incentives for a CDT-style

deviation to 𝑎, she scales each node by the probability of reaching

that node under profile 𝜇. This yields utility incentives∑
ℎ∈𝐼 P(ℎ | 𝜇) ·𝑈 (𝑖 ) (𝜇 | ℎ𝑎).

to CDT-deviate to pure action 𝑎 at infoset 𝐼 . This value is equal to

the partial derivative ∇𝐼 ,𝑎 𝑈
(𝑖 ) (𝜇) of utility function 𝑈 (𝑖 )

w.r.t. to

action 𝑎 of 𝐼 ∈ I (𝑖 )
at point 𝜇 [24, 25].

Definition 13. Given a profile 𝜇 in game Γ, a player 𝑖 ∈ N
determines her (ex-ante) utility from CDT-deviating at infoset 𝐼 ∈
I (𝑖 ) to mixed action 𝛼 ∈ Δ(𝐴𝐼 ) as𝑈 (𝑖 )

CDT
(𝛼 | 𝜇, 𝐼 ) :=

𝑈 (𝑖 ) (𝜇) +∑
𝑎∈𝐴𝐼

(𝛼 (𝑎) − 𝜇 (𝑎 | 𝐼 )) · ∇𝐼 ,𝑎 𝑈
(𝑖 ) (𝜇).



In other words, this is the first-order Taylor approximation of

𝑈 (𝑖 )
at 𝜇 for the space Δ(𝐴𝐼 ). In the appendix, we illustrate on a

simple game that the ex-ante CDT-utility may yield unreasonable

utility payoffs for values 𝛼 far away from 𝜇 (· | 𝐼 ). Moreover, if

𝛼 ≠ 𝜇 (· | 𝐼 ), we observe that the resulting behavior of the deviating
player cannot be captured by a behavioral strategy that the player

could have chosen from the beginning. That is because the player

is now acting differently at different nodes of the same infoset.

Definition 14. A profile 𝜇 is said to be a CDT equilibrium for
game Γ if for all player 𝑖 ∈ N , all her infosets 𝐼 ∈ I (𝑖 ) , and all
alternative mixed actions 𝛼 ∈ Δ(𝐴𝐼 ), we have
𝑈 (𝑖 ) (𝜇) = 𝑈

(𝑖 )
CDT

(
𝜇 (𝑖 ) (· | 𝐼 )

�� 𝜇, 𝐼 ) ≥ 𝑈
(𝑖 )
CDT

(𝛼 | 𝜇, 𝐼 ).

Therefore, no player has any utility incentives to deviate at an

infoset in a CDT fashion to another mixed action.

Lemma 15 (21). Any game Γ with imperfect recall admits a CDT
equilibrium.

Thus, let us define CDT-S as the search problem that asks for an

𝜖-CDT equilibrium in the game (which always exists). Let 1P-CDT-S

be its restriction to single-player games.

Proposition 16 (27).

(1) A profile 𝜇 is a CDT equilibrium of Γ if and only if for all player
𝑖 ∈ N , strategy 𝜇 (𝑖 ) is a KKT-point of

max𝜋 (𝑖 ) ∈𝑆 (𝑖 ) 𝑈
(𝑖 ) (𝜋 (𝑖 ) , 𝜇 (−𝑖 ) ).

(2) Problem 1P-CDT-S is CLS-complete.

A comparison to the original formulation of Tewolde et al. is

given in the appendix, since we work in multi-player settings now

and in the ex-ante perspective. We shall also note a positive algo-

rithmic result which they do not state, but which can be obtained

analogously to Fearnley et al. [13, Lemma C.4].

Corollary 17. 1P-CDT-S for 1/poly precision is in P.

4.3 Comparing the Solution Concepts
The three solution concepts form an inclusion hierarchy.

Proposition 18 (24). All Nash equilibria are EDT equilibria. All
EDT equilibria are CDT equilibria. In general, neither statement holds
in reverse.

This also implies that any single-player game admits both EDT

and CDT equilibria since it admits an optimal strategy (= Nash

equilibrium).

We will find in this paper that CDT equilibria are easier to com-

pute than EDT equilibria. Indeed, Proposition 12 and Corollary 17

already serve as the first evidence towards such a separation. We

can also find a hint towards such an insight by considering the

easier problem of verifying whether a given profile could be an

equilibrium. For CDT, this can be done in polytime: since𝑈
(𝑖 )
CDT

is

linear in 𝛼 , we do not actually need to check Definition 14 for all

𝛼 ∈ Δ(𝐴𝐼 ), but it suffices to only check it for pure actions 𝑎 ∈ 𝐴𝐼 .

For EDT equilibria, on the other hand, there is no simple-to-check

characterization: 𝑈 (𝑖 ) (𝜇 (𝑖 )
𝐼 ↦→·, 𝜇

(−𝑖 ) ) is a polynomial function over

Δ(𝐴𝐼 ), for which no easy verification method is known. While this

is the general case, we shall highlight two special cases.

Remark 19. Without absentmindedness, deviation incentives of
EDT and of CDT coincide. Thus, the equilibrium concepts coincide
and complexity results such as Proposition 16 and Theorem 6 apply to
EDT equilibria.

Remark 20. If each player has only one infoset in total, then the
EDT equilibria coincide with the Nash equilibria.

5 COMPLEXITIES OF MULTISELVES
EQUILIBRIA

In this section, we present our computational results for multiselves

equilibria.

5.1 EDT Equilibria
In multi-player settings, EDT equilibria may not exist. In the ap-

pendix, we illustrate an absentminded penalty shoot-out that is

a variant of Figure 1a with no EDT equilibrium, and additionally

parameterize the bottom left payoff with 𝜆 ∈ R.

Lemma 21. The parameterized absentminded penalty shoot-out
has an EDT equilibrium if and only if 𝜆 ≥ 3.

Theorem 3. Deciding whether a gamewith imperfect recall admits
an EDT equilibrium is ∃R-hard and in ∃∀R. Hardness holds even for
2p0s games where on player has a degree of absentmindedness of 4

and the other player has perfect recall.

The idea is to reduce from Proposition 4 again, as done in Theo-

rem 1. However, this time we attach the single-player game to the

bottom left of the absentminded kicker game.

Now consider problem EDT-D that asks to distinguish between

whether an exact EDT equilibrium exists or whether no 𝜖-EDT

equilibrium exists.

Theorem 4. EDT-D is ΣP
2
-complete. Hardness holds for 1/poly

precision and 2p0s games with one infoset per player and a degree of
absentmindedness of 4.

The proof casts the game construction for Theorem 1 to a game

where each player only has one infoset, in order to use Remark 20.

For that, we cannot reduce from Lemma 7 this time, but we reduce

directly from the ΣP
2
-complete problem ∃∀3-DNF-SAT. Moreover,

we make use of the flexibility that EDT-utilities can represent arbi-

trary polynomial functions, albeit only over one simplex.

Next, we turn to the search problem. The algorithm of Proposi-

tion 10 also finds 𝜖-EDT equilibria if adjusted for its equilibrium

conditions. In single-player settings, however, we can do better

since EDT equilibria are guaranteed to exist. Let 1P-EDT-S be the

search problem that asks for an 𝜖-EDT equilibrium. This problem

was left open by Tewolde et al.

Theorem 5. 1P-EDT-S is PLS-complete when the branching factor
is constant. Hardness holds even when the branching factor and the
degree of absentmindedness are 2.

This is in contrast to theCLS-membership of 1P-CDT-S by Propo-

sition 16. In the appendix, we discuss CLS as a subclass of PLS that

is believed to be a proper subset based on conditional separations.

Corollary 22. 1P-EDT-S for 1/poly precision is in P when the
branching factor is constant.



In the proofs, we use that 1P-EDT-S is computationally equivalent

to the search problem that takes a polynomial function 𝑝 over a

product of simplices, and asks for an approximate “Nash equilibrium

point” of it. In the special case where the branching factor is 2, the

domain becomes the hypercube [0, 1]ℓ , and an 𝜖-Nash equilibrium

𝑥 would have to satisfy

∀𝑗 ∈ [ℓ] ∀𝑦 ∈ [0, 1] : 𝑝 (𝑥) ≥ 𝑝 (𝑦, 𝑥− 𝑗 ) − 𝜖 .

We show that this problem is PLS-complete. This result may be of

independent interest for the optimization literature.

The PLS-hardness follows from a reduction from PLS-complete

problem MaxCut/Flip [26, 31]. For the positive algorithmic re-

sults of PLS and P membership respectively, we show that 𝜖-best-

response dynamics converges to an 𝜖-EDT equilibrium. We run a

similar method to Proposition 10 in order to compute an 𝜖-best

response mixed action of an infoset to the other infosets. This

takes polytime if the number of actions per infoset is bounded.

Without this restriction, we run into the impossibility result of

Proposition 12.

5.2 CDT Equilibria
It is well-known that finding a Nash equilibrium in a normal-form

game is PPAD-complete [6, 9]. This straightforwardly gives a com-

plexity lower bound for CDT-S since a normal-form game can be

cast to extensive form. Furthermore, we can show the following.

Theorem 6. CDT-S is PPAD-complete. Hardness holds even for
two-player perfect-recall games with one infoset per player and for
1/poly precision.

For PPAD-membership we investigate the existence proof of

Lemma 15 by Lambert et al.. They first shows a connection to

perfect-recall games with particular symmetries, and then give

a Brouwer fixed point argument which resembles that of Nash’s

for symmetric games. However, its construction blows up in size

in the order of factorials. Therefore, we modify the fixed point

argument to one that works directly on CDT utilities, and to one

whose Brouwer function and precision errors satisfy the conditions

given in [12] for PPAD-membership.

We highlight the stark contrast between Theorems 4 and 6. Find-

ing a CDT equilibrium sits well within in the landscape of total NP
search problems, whereas even deciding whether an EDT equilib-

rium exists is already on higher levels of the polynomial hierarchy,

let alone finding one.

6 THE INSIGNIFICANCE OF EXOGENOUS
STOCHASTICITY

Our hardness results for single-player settings (Proposition 4, Propo-

sition 5, and Theorem 5) so far rely on the presence of chance nodes.

In this section, we investigate the complexity of games without

chance nodes. Of course, one might choose to add players to the

game to simulate nature, even in games of perfect recall. How-

ever, adding players may add significantly to the computational

complexity of the game, cf. P vs PPAD for Nash equilibria in single-

player vs two-player settings under perfect recall, or Proposition 16

vs Theorem 6 for CDT equilibria under imperfect recall. Interest-

ingly enough, we can show that in the presence of imperfect recall,

chance nodes do not affect the complexity.

𝐺 𝐺 ′

1/2 1/2

→

-1
𝐺 𝐺 ′

-1

𝐼𝑐

Figure 3: How to remove a chance node if it is located at the
root. Starting with the game on the left, replace it with in-
foset 𝐼𝑐 . Assuming w.l.o.g. that the subgames𝐺 and𝐺 ′ always
yield positive payoffs, the player of 𝐼𝑐 wants to randomize
uniformly there, independent of the play in 𝐺 and 𝐺 ′.

Theorem 7. All computational hardness results in this paper for
the three equilibrium concepts {Nash, EDT, CDT} still hold even when
the game has no chance nodes. This is on top of previously possible
restrictions (e.g., branching factor), except that the restrictions on the
number of infosets and the degree of absentmindedness increase by
one and to O(log |H |) respectively.

In other words, all exogenous stochasticity can be replaced by

one infoset (of an arbitrary player, say P1) with absentmindedness,

i.e., replaced by uncertainty that arises from forgetting P1’s own

past actions in an identical situation. The idea of the proof is to first

transform the game Γ to an equivalent game Γ̃ that has one chance

node ℎ𝑐 at the root. Next, we replace ℎ𝑐 with an infoset 𝐼𝑐 with

absentmindedness. Figure 3 illustrates this for the case where ℎ𝑐
uniformly randomizes over two actions. The resulting game Γ′ has
the same number of players and strategy sets as Γ, except for the
additional infoset 𝐼𝑐 for P1. In equilibrium, the induced conditional

probability distribution over the children of ℎ𝑐 will be the same in

Γ and Γ′. Finally, there is a polynomial relationship between the

equilibrium precision errors in the two games.

Next, recall Opt-D from Proposition 5 which asks whether an

approximate target value can be achieved in a single-player game

with imperfect recall. We improve Theorem 7 for Opt-D specifically

with an independent proof.

Proposition 23. Opt-D is NP-hard, even for games with no
chance nodes, one infoset, a degree of absentmindedness of 2, and
1/poly precision.

In particular, this also holds for deciding whether any EDT equi-

librium achieves an approximate target value. The proof reduces

from the 2-MinSAT problem [18].

7 CONCLUSION
Historically, games of imperfect recall have received only limited

attention, as it is not clear that they cleanly model any strategic

interactions between humans. However, as we argued in the intro-

duction, they are more practically significant in the context of AI

agents. However, they also pose new challenges. Optimal decision

making under imperfect recall is hard due to its close connections

to polynomial optimization. This and previous work has shown

that in the single-player setting—and it holds even more so in multi-

player settings, where we established that even deciding whether a



Nash equilibrium (i.e., mutual best responses) exists is very hard.

Therefore, we turned towards suitable relaxations that arose from

the game theory and philosophy literature. We studied them, and

their relationship to each other and to the Nash equilibrium concept,

with a computational lens.

We find that CDT equilibria stay relatively easy to find, joining

the complexity class of finding a Nash equilibrium in perfect-recall
or normal-form games. This is because CDT defines the most lo-

cal form of deviation, affecting only one decision node at a time.

EDT equilibria show a more convoluted picture. In single-player

settings, we relate it to polynomial local search via best-response

dynamics. Furthermore, without absentmindedness, EDT and CDT

equilibria coincide and hence become equally easy (Remark 19).

With absentmindedness, on the other hand, the relevant decision

problems for EDT equilibria (in single- or multi-player settings)

tend to coincide in complexity with the analogous problems for

Nash equilibria under imperfect recall.
One conclusion, however, has presented itself in all settings

considered throughout this paper: (assuming well-accepted com-

plexity assumptions), CDT equilibria are in general strictly easier

to find and decide than EDT and Nash equilibria (Proposition 16

vs Theorem 5, Corollary 17 vs Proposition 12, and Theorem 6 vs

Theorem 4). Does this imply that CDT-based reasoning is more

suitable for computationally-bounded agents?

Finally, the computational differences between EDT equilibria

and Nash equilibria have yet to be properly understood, that is,

the differences between global optimization of polynomials over a

single simplex versus a product of simplices. We leave this open for

future work, with a particular interest in the search complexities

of these two equilibrium concepts.
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