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ABSTRACT
In this paper, we investigate under which conditions normal-form

games are (guaranteed) to be strategically equivalent. First, we

show for 𝑁 -player games (𝑁 ≥ 3) that

(A) it is NP-hard to decide whether a strategy constitutes a best

response to some strategy profile of the opponents, and that

(B) it is co-NP-hard to decide whether two games have the same

best response sets.

Combining that with known results from the literature, we move

our attention to equivalence-preserving game transformations.

It is a widely used fact that a positive affine (linear) transforma-

tion of the utility payoffs neither changes the best response sets

nor the Nash equilibrium set. We investigate which other game

transformations also possess either of the two properties when

being applied to an arbitrary 𝑁 -player game (𝑁 ≥ 2):

(i) The Nash equilibrium set stays the same.

(ii) The best response sets stay the same.

For game transformations that operate player-wise and strategy-

wise, we prove that (i) implies (ii) and that transformations with

property (ii) must be positive affine. The resulting equivalence

chain highlights the special status of positive affine transformations

among all the transformation procedures that preserve key game-

theoretic characteristics.
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1 INTRODUCTION
When faced with a strategic interaction with other agents, it is

helpful to detect when the current situation can be treated in the

same way as another strategic game that has already been dealt

with in in the past. Du [13] has shown that this is generally a

computationally hard task for the case of Nash equilibria. As we

will show, this task is also computationally hard in the case of best

responses.

Therefore, one may instead take an alternative approach for the

currently encountered strategic interaction and generate a space of

many other situations that share key game-theoretic characteristics,
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with the goal to find an instance of that space that can be analyzed

and solved efficiently. More concretely, a classic tool that emerged

since the beginnings of game theory has been to transform a given

game into other strategically equivalent games that are easier to

analyze [39]. Positive affine (linear) transformations (PATs) have

been particularly useful in that regard [3, 5, 24]. To illustrate PATs,

consider any 2-player normal-form game in which the players’

utilities are measured in dollars. Then, the best-response strategies

of player 1 do not change if her utility payoffs are multiplied by a

factor of 5. Moreover, they also do not change if 10 dollars are added

to all outcomes that involve player 2 playing his, say, third strategy.

More generally, PATs have the power to rescale the utility payoffs

of each player and to add constant terms to the utility payoffs of a

player 𝑖 for each strategy choice k−𝑖 of her opponents.
Through leveraging PATs, previous work significantly extended

the applicability of efficient Nash equilibrium solvers [2, 4, 11, 38]

to classes beyond those of zero-sum and rank-1 games
1
[20, 22, 30].

The key to the success of these extensions was the well-known

property of PATs that they do not change the Nash equilibrium set

and best response sets when being applied to an arbitrary game.

In this paper, we address the question of whether there are other

(efficiently computable) game transformations with that same prop-

erty.

2 OVERVIEW
Sections 3 and 5 provide some background on game-theoretic con-

cepts that are relevant to understanding and deriving our main

results. In Section 4, we develop computational hardness results

for deciding whether a strategy in a game ever constitutes a best

response and for deciding whether two games have the same best

response sets. We believe these results are of independent interest.

However, they are also important for Section 6 in which we discuss

why we will henceforth restrict our attention to game transforma-

tions that transform utilities player-wise and strategy-wise (called

separability). In Section 7 we proceed to characterize all separable

game transformations that preserve the Nash equilibrium set when

being applied to an arbitrary 𝑁 -player game. Last but not least,

Section 8 puts our results into context with further related work.

To illustrate the insights of Section 7 on an example, consider𝐻Ex

that takes any 2-player 2×2 normal-form gamewith payoffmatrices

𝐴 =

(
𝑎11 𝑎12

𝑎21 𝑎22

)
, 𝐵 =

(
𝑏11 𝑏12

𝑏21 𝑏22

)
and transforms it into the game𝐻Ex (𝐴, 𝐵) := (𝐴′, 𝐵′) that is defined
as

𝐴′ =
(
−2 · 𝑎11 + 10 𝑎5

12

𝑒𝑎21
0

)
1
A 2-player game, represented by its payoff matrices 𝐴, 𝐵 ∈ R𝑚×𝑛

, is said to have

rank-1 if rank(𝐴 + 𝐵) = 1.



and

𝐵′ =
(
|𝑏11 | sign(𝑏12)√︁
|𝑏22 | arctan(𝑏21)

)
.

As one can see with the sign function in 𝐵′, it is noteworthy to

highlight that our notion of a game transformation allows for non-

continuous functions. With Theorem 2, we will show that there

must exist 2× 2 games (𝐴, 𝐵) for which 𝐻Ex does not preserve their

Nash equilibrium set or - respectively - their best response sets.

More generally, we derive that universally preserving the Nash

equilibrium set implies that the best response sets always have to

be preserved as well; and that the latter property is only satisfied

by game transformations 𝐻 with the very restricted structure of

a PAT. In the example of 𝐻Ex, each transformation map within it

single-handedly already violates a PAT structure.

All proofs for statements in this paper can be found in the ap-

pendix.

3 NORMAL-FORM GAMES
Notation-wise, we denote [𝑛] := {1, . . . , 𝑛} for any 𝑛 ∈ N.
A normal-form multiplayer game 𝐺 specifies

(a) the number of players 𝑁 ∈ N, 𝑁 ≥ 2,

(b) a set of pure strategies 𝑆𝑖 = [𝑚𝑖 ] for each player 𝑖 where

𝑚𝑖 ∈ N,𝑚𝑖 ≥ 2, and

(c) the utility payoffs for each player 𝑖 given as a function 𝑢𝑖 :

𝑆1 × . . . × 𝑆𝑁 −→ R.
Denote the set of strategy profiles in 𝐺 as 𝑆 := 𝑆1 × . . . × 𝑆𝑁 .

Throughout this paper, all considered multiplayer games shall have

the same number of players𝑁 and the same set of strategy profiles 𝑆 .

Hence, any game 𝐺 will be determined by its utility functions

{𝑢𝑖 }𝑖∈[𝑁 ] . The players choose their strategies simultaneously and

they cannot communicate with each other. A utility function 𝑢𝑖 can

be summarized by its pure strategy outcomes for player 𝑖 , captured

as an 𝑁 -dimensional tensor or array

{
𝑢𝑖 (k)

}
k∈𝑆 .

As usual, we allow the players to randomize over their pure

strategies, called mixed strategies. Then, player 𝑖’s strategy space

extends to the set of probability distributions

Δ(𝑆𝑖 ) :=

{
𝑠𝑖 = (𝑠𝑖

𝑘
)𝑘 ∈ R𝑚𝑖

��� 𝑠𝑖𝑘 ≥ 0 ∀𝑘 ∈ [𝑚𝑖 ] and
∑︁

𝑘∈[𝑚𝑖 ]
𝑠𝑖
𝑘
= 1

}
over 𝑆𝑖 . A tuple

s = (𝑠1, . . . , 𝑠𝑁 ) ∈ Δ(𝑆1) × . . . × Δ(𝑆𝑁 ) =: Δ(𝑆)

is called a mixed strategy profile
2
in𝐺 . The utility payoff of player 𝑖

under profile s is defined as the player’s utility payoff in expectation

𝑢𝑖 (s) :=
∑︁
k∈𝑆

𝑠1

𝑘1

· . . . · 𝑠𝑁
𝑘𝑁

· 𝑢𝑖 (k) .

The goal of each player is to maximize her utility.

We will abbreviate with 𝑆−𝑖 the set that consists of all possible
pure strategy choices k−𝑖 = (𝑘1, . . . , 𝑘𝑖−1, 𝑘𝑖+1, . . . , 𝑘𝑁 ) of the op-
ponent players (resp. Δ(𝑆−𝑖 ) for the set of mixed strategy choices

s−𝑖 = (𝑠1, . . . , 𝑠𝑖−1, 𝑠𝑖+1, . . . , 𝑠𝑁 )). We will also use 𝑢𝑖 (𝑘𝑖 , k−𝑖 ) in-
stead of 𝑢𝑖 (k) to stress how player 𝑖 can only influence her own

2
Not to be confused with a correlated strategy: In our notation, Δ(𝑆 ) itself is not a
simplex of high dimension but only the product of 𝑁 lower-dimensional simplices.

strategy when it comes to her payoff (resp. 𝑢𝑖 (𝑠𝑖 , s−𝑖 ) instead of

𝑢𝑖 (s)).

Definition 3.1. The best response set of player 𝑖 to the opponents’

strategy choices s−𝑖 is defined as

BR𝑢𝑖 (s−𝑖 ) := argmax

𝑡𝑖 ∈Δ(𝑆𝑖 )

{
𝑢𝑖 (𝑡𝑖 , s−𝑖 )

}
.

Best response strategies capture the idea of optimal play against

the other player’s strategy choices. The most popular equilibrium

concept in non-cooperative games is based on best responses.

Definition 3.2. A strategy profile s ∈ Δ(𝑆) to a game𝐺 = {𝑢𝑖 }𝑖∈[𝑁 ]
is called a Nash equilibrium if for all player 𝑖 ∈ [𝑁 ] we have

𝑠𝑖 ∈ BR𝑢𝑖 (s−𝑖 ).

By Nash [31], any multiplayer game 𝐺 admits at least one Nash

equilibrium.

4 DECISION PROBLEMS ABOUT BEST
RESPONSES

In this section we show that two decision problems about best

responses are hard for 𝑁 -player games, when 𝑁 ≥ 3. To our knowl-

edge, these results are novel.

For computational problems involving 𝑁 -player games𝐺 with

strategy sets (𝑆𝑖 )𝑖∈[𝑁 ] and utility functions (𝑢𝑖 )𝑖∈[𝑁 ] , we are in-
terested in their computational complexities in terms of

∑
𝑖 |𝑆𝑖 | and

the binary encoding of all utility payoffs

(
𝑢𝑖 (s)

)
s∈𝑆,𝑖∈[𝑁 ]

. For that,

we require that utility payoffs take on rational values only.

First, we consider the problem of deciding whether a mixed

strategy of a player is ever a best response to some mixed strategy

profile of the opponent players. In its computationally easiest form,

we may formulate it as the following.

Definition 4.1 (CheckIfEverBR). Given a 3-player normal-form

game, does there exist mixed strategies r ∈ Δ(𝑆2) of PL2 and

s ∈ Δ(𝑆3) of PL3 such that pure strategy 1 of PL1 is a best response

to (r, s)?

This is different from determining the best responses of a player

to a given strategy profile of the opponents, a task that can be

solved in polynomial time. Our problem is related to rationalizable
strategies [7, 32] - a concept that is based on the idea that a rational

player can and should eliminate any strategy that is not a best

response to some belief over what her opponents may play.

Proposition 4.2. CheckIfEverBR is NP-hard.

The analogous formulation of CheckIfEverBR for the case of

2-player games can be efficiently decided by solving a system of

linear (in-)equalities. We can recover polynomial-time solvability

for many-player games if we allow the opponents to play in a

coordinated fashion (cf. correlated strategies). On a related note,

Pearce [32][Lemma 3] shows that a strategy 𝑠∗ is a best-response
to some correlated strategy of the opponents if and only if 𝑠∗ is not
a strictly dominated strategy.

We prove Proposition 4.2 by a reduction from the Balanced

Complete Bipartite Subgraph problem. This decision problem asks

whether a given weighted bipartite graph 𝐺 = (𝑉 ∪𝑊, 𝐸) has
subsets 𝑉 ∗ ⊆ 𝑉 and𝑊 ∗ ⊆ 𝑊 of given size 𝐾 ∈ N that are fully



connected, that is, (𝑣,𝑤) ∈ 𝐸 for all 𝑣 ∈ 𝑉 ∗,𝑤 ∈𝑊 ∗
. This problem

is known to be NP-complete [17][GT24].

Proof sketch of Proposition 4.2. Given an instance𝐺 = (𝑉∪
𝑊, 𝐸) and 𝐾 of the Balanced Complete Bipartite Subgraph problem,

construct a three player game where PL2 has strategy set 𝑉 and

PL3 has strategy set𝑊 . PL1 will have the following strategies: Strat-

egy “1” which will be the subject of interest in CheckIfEverBR,

one strategy for each node in 𝐺 , and one strategy for each edge

(𝑣,𝑤) ∈ 𝑉 ×𝑊 that is not present in 𝐺 . The utility payoffs of

PL1 will be carefully constructed such that strategy 1 is a best re-

sponse to mixed strategies (r, s) of PL2 and PL3 if and only if the

support of r and s form subsets 𝑉 ∗
and𝑊 ∗

that make a balanced

complete bipartite subgraph of 𝐺 . To that end, we make strategy 𝑣

(resp.𝑤 ) of PL1 very attractive for PL1 in the case that PL2 (resp.

PL3) plays their corresponding strategy 𝑣 (resp.𝑤 ) with too much

probability. Moreover, we make a strategy (𝑣,𝑤) ∉ 𝐸 of PL1 very

attractive for PL1 in the case that PL2 and PL3 both play their corre-

sponding strategies 𝑣 and𝑤 with any significant probability at all.

Intuitively, these two conditions accomplish that in any potential

certificate (r, s), PL2 and PL3 will mix over at least 𝐾 strategies and,

moreover, they will only put non-negligible weight on strategies 𝑣

and𝑤 if (𝑣,𝑤) ∈ 𝐸. □

Based on the hardness of CheckIfEverBR, we can prove co-NP-
hardness of deciding best response equivalence.

Definition 4.3 (CheckIfSameBRs). Given two 3-player normal-

form games with strategy set 𝑆1 × 𝑆2 × 𝑆3
, do they have the same

best response sets?

Theorem 1. CheckIfSameBRs is co-NP-hard.

Proof sketch. Given a game instance 𝐺 of CheckIfSameBRs,

construct another game𝐺 ′
by changing the utility that PL1 receives

from playing strategy 1 to something worse than the lowest payoff

present in 𝐺 . If a best response set changed from 𝐺 to 𝐺 ′
, then it

must also be the case that strategy 1 for PL1 was added or removed

from that best response set. The former cannot happen because

strategy 1 is strictly dominated for PL1 in 𝐺 ′
which prevents it

from ever being a best response. Thus,𝐺 and𝐺 ′
will have the same

best response sets if and only if strategy 1 is never a best response

strategy in 𝐺 . □

Together with prior work found in the literature, Theorem 1 will

guide us in the next sections when it comes to the types of game

transformations that we may consider for preserving key game-

theoretic characteristics. We believe, however, that Proposition 4.2

and Theorem 1 are of independent interest for algorithmic game

theory and AI research.

5 PRELIMINARIES ON GAME
TRANSFORMATIONS

We introduce PATs and the more general class of separable game

transformations.

5.1 Positive Affine Transformations
The following lemma (or restricted versions of it) is a well-known

result for 2-player games
3
. Here, the notation 1𝑛 ∈ R𝑛 stands for

the vector with all ones as its entries.

Lemma 5.1. Let (𝐴, 𝐵) be an 𝑚1 × 𝑚2 bimatrix game and take
arbitrary scalars 𝛼1, 𝛼2 > 0 and vectors 𝑐1 ∈ R𝑚2 , 𝑐2 ∈ R𝑚1 . Define

𝐴′ = 𝛼1𝐴 + 1𝑚1
(𝑐1)𝑇 and 𝐵′ = 𝛼2𝐵 + 𝑐21𝑇𝑚2

.

Then (𝐴′, 𝐵′) has the same best response sets as (𝐴, 𝐵). Consequently,
both games have the same Nash equilibrium set.

The game transformations in Lemma 5.1 are called (2-player)

positive affine transformations (PATs). An explicit example of a

2-player PAT is one that transforms a 2 × 2 game (𝐴, 𝐵) into

𝐴′ =
(
2𝑎11 + 10 2𝑎12 − 5

2𝑎21 + 10 2𝑎22 − 5

)
and

𝐵′ =
(

1

2
𝑏11

1

2
𝑏12

1

2
𝑏11 −

√
3

1

2
𝑏21 −

√
3

)
.

The intuition behind Lemma 5.1 is as follows: PL1 wants to

maximize her utility given the strategy that PL2 chose. A positive

rescaling of 𝑢1 will change the utility payoffs but will not change

the utility-maximizing strategies. The same holds true if we add

utility payoffs to 𝑢1 that are only dependent on the strategy choice

of her opponent PL2, because that would make a constant shift in

terms of the decision variables of PL1.

Let us generalize PATs to multiplayer games.

Definition 5.2. A positive affine transformation (PAT) specifies

for each player 𝑖 a scaling parameter 𝛼𝑖 ∈ R, 𝛼𝑖 > 0, and translation

constants 𝐶𝑖 := (𝑐𝑖k−𝑖 )k−𝑖 ∈𝑆−𝑖 for each choice of pure strategies

from the opponents. The PAT 𝐻PAT =
{
𝛼𝑖 ,𝐶𝑖

}
𝑖∈[𝑁 ] then takes any

game𝐺 = {𝑢𝑖 }𝑖∈[𝑁 ] as an input and returns the transformed game

𝐻PAT (𝐺) = {𝑢′
𝑖
}𝑖∈[𝑁 ] with utility functions

𝑢′𝑖 : 𝑆 −→ R
k ↦−→ 𝛼𝑖 · 𝑢𝑖 (k) + 𝑐𝑖k−𝑖 .

(1)

Multiplayer PATs also preserve the best response sets and Nash

equilibrium set, which we prove in the appendix for completeness.

Lemma 5.3. Take a PAT 𝐻PAT =
{
𝛼𝑖 ,𝐶𝑖

}
𝑖∈[𝑁 ] and any game

𝐺 = {𝑢𝑖 }𝑖∈[𝑁 ] . Then, the transformed game 𝐻PAT (𝐺) = {𝑢′
𝑖
}𝑖∈[𝑁 ]

has the same best response sets as the original game 𝐺 . Consequently,
𝐻PAT (𝐺) also has the same Nash equilibrium set as 𝐺 .

PATs have found much success as a tool for simplifying a given

game precisely because of this property. We want to investigate

which other game transformations also preserve the best response

sets or the Nash equilibrium set. If we found more of these trans-

formations, we could use them to, e.g., further increase the class of

efficiently solvable games.

3
See Heyman and Gupta [20, Lemma 2.1], Maschler et al. [26, Theorem 5.35], Harsanyi

and Selten [19, Chapter 3] or Başar and Olsder [6, Proposition 3.1].



5.2 Separable Game Transformations
In this paper, we will focus on the following space of game trans-

formations. We discuss in Section 6 why this forms a maximally

large search space within which we may still reasonably hope to

find game transformation that are equivalence-preserving and effi-

ciently computable.

Definition 5.4. A separable game transformation 𝐻 = {𝐻 𝑖 }𝑖∈[𝑁 ]
specifies for each player 𝑖 a collection of functions

𝐻 𝑖 :=
{
ℎ𝑖k : R −→ R

}
k∈𝑆 ,

indexed by the different pure strategy profiles k.
The transformation 𝐻 can then be applied to any 𝑁 -player game

𝐺 = {𝑢𝑖 }𝑖∈[𝑁 ] with strategy set 𝑆 to construct the transformed

game 𝐻 (𝐺) = {𝐻 𝑖 (𝑢𝑖 )}𝑖∈[𝑁 ] where

𝐻 𝑖 (𝑢𝑖 ) : 𝑆 → R, k ↦→ ℎ𝑖k
(
𝑢𝑖 (k)

)
. (2)

Observe that the utility payoff of player 𝑖 in the transformed

game 𝐻 (𝐺) from the pure strategy outcome k is only a function of

the utility payoff from that same player in that same pure strategy

outcome of the original game 𝐺 .

We extend the utility functions 𝐻 𝑖 (𝑢𝑖 ) to mixed strategy profiles

s ∈ Δ(𝑆) as usual through

𝐻 𝑖 (𝑢𝑖 ) (s) :=
∑︁
k∈𝑆

𝑠1

𝑘1

· . . . · 𝑠𝑁
𝑘𝑁

· ℎ𝑖k
(
𝑢𝑖 (k)

)
.

To simplify future notation, we will often use ℎ𝑖
𝑘𝑖 ,k−𝑖

to refer to ℎ𝑖k.

Remark 5.5. A multiplayer positive affine transformation 𝐻PAT ={
𝛼𝑖 ,𝐶𝑖

}
𝑖∈[𝑁 ] makes a separable game transformation𝐻 = {𝐻 𝑖 }𝑖∈[𝑁 ]

by setting

ℎ𝑖k : R→ R
𝑧 ↦→ 𝛼𝑖 · 𝑧 + 𝑐𝑖k−𝑖 .

In the following Definitions 5.6 and 5.7, we define the universally

preserving characteristics that we are interested in.

Definition 5.6. Let 𝐻 = {𝐻 𝑖 }𝑖∈[𝑁 ] be a separable game trans-

formation. Then we say that 𝐻 universally preserves Nash equi-

librium sets if for all games 𝐺 = {𝑢𝑖 }𝑖∈[𝑁 ] the transformed game

𝐻 (𝐺) = {𝐻 𝑖 (𝑢𝑖 )}𝑖∈[𝑁 ] has the same Nash equilibrium set as 𝐺 .

Definition 5.7. Let map 𝐻 𝑖 come from a separable game transfor-

mation𝐻 . Then we say that𝐻 𝑖 universally preserves best responses

if for all utility functions𝑢𝑖 : 𝑆 −→ R and for all opponents’ strategy
choices s−𝑖 ∈ Δ(𝑆−𝑖 ):

BR𝐻 𝑖 (𝑢𝑖 ) (s
−𝑖 ) = argmax

𝑡𝑖 ∈Δ(𝑆𝑖 )

{
𝐻 𝑖 (𝑢𝑖 ) (𝑡𝑖 , s−𝑖 )

}
= argmax

𝑡𝑖 ∈Δ(𝑆𝑖 )

{
𝑢𝑖 (𝑡𝑖 , s−𝑖 )

}
= BR𝑢𝑖 (s−𝑖 ) .

Lemma 5.3 states that the maps 𝐻 𝑖 of a PAT universally preserve

best responses. Note, moreover, that by definition of a Nash equi-

librium, a game transformation 𝐻 = {𝐻 𝑖 }𝑖∈[𝑁 ] will universally
preserve Nash equilibrium sets if for all player 𝑖 the map 𝐻 𝑖 uni-

versally preserves best responses. Therefore, being a PAT implies

Definition 5.7 implies Definition 5.6. In Section 7 we will show

the reverse implication chain for game transformations that are

separable.

6 DISCUSSION OF RESTRICTIONS
The space of separable game transformations forms a vast landscape

in which we may search for universally preserving transformations.

This can be seen from the game transformation example 𝐻Ex of

Section 2. However, one might still ask why this paper does not

expand its attention to non-separable game transformations. We

will discuss that in this section.

For example, consider a game transformation that introduces

or removes duplicate strategies or dummy players. Note that this

would require the transformations to have the power to change the

strategy sets and player set. Nonetheless, these specific examples

are well-behaved in the sense that they alter the Nash equilibrium

set (or best responses) in an easily describable manner. Transfor-

mations with this property appear in the literature under the term

Nash homomorphism, and they have been used for complexity-

theoretic studies, e.g., of win-lose games [1] or ranking games [8].

Suffice to say, once we allow for game transformations to arbitrarily

change the game structure, i.e. the player set and strategy sets, it is

not straightforward to define anymore under what conditions two

games of different game structure should be considered “strategi-

cally equivalent”. This makes such general game transformations

prohibitively complex (or impossible) to analyze beyond a case by

case basis. Therefore, and in accordance with most of the litera-

ture on strategic equivalence between games [13, 23, 29, 30], we

restrict our attention to games whose game structures are directly

comparable.

Indeed, game transformations that preserve the player set and

the strategy sets form an interesting search space because Defini-

tions 5.6 and 5.7 can be directly extended to it and because within

that search space, some of our upcoming results will not hold true

anymore. Compare the Prisoner’s Dilemma with the Quality game,

as presented by von Stengel [40]:(
2, 2 0, 3

3, 0 1, 1

)
and

(
2, 2 0, 1

3, 0 1, 1

)
.

Both games have the same game structure and the same unique

Nash equilibrium, namely, where PL1 plays the bottom row and

PL2 plays the right column. But the best response of PL2 to PL1

playing the top row is different in the two games. This example

illustrates the fact that strictly dominated strategies will never be a

best response, and so they will never appear in a Nash equilibrium

(nor in a best response set). Therefore, we can think of a game

transformation procedure that iteratively detects strictly dominated

strategies and sets their payoffs to a large negative number. This

transformation universally preserves Nash equilibria, but it does

not universally preserve best response sets. Note that this game

transformation is not separable because its maps ℎ𝑖k now need to

take all utility payoffs of the game into consideration, and not only

what utility player 𝑖 receives from strategy profile k.
In a similar fashion, one may think of best-response-preserving

transformations that are not PATs. This was studied extensively

by Liu [23], who discusses the following example of 3 × 2 payoff

matrices of PL1 in 2-player games:

𝐴 =
©­«
6 0

0 6

4 4

ª®¬ and 𝐴′ = ©­«
6 0

2 5

4 4

ª®¬ . (3)



Figure 1: The utility payoffs of each pure strategy 1, 2, 3 of
PL1 in response to the mixed strategy of PL2 that plays 1

with probability 𝑥 and that plays 2 with probability 1 − 𝑥 .
Plotted once each for the matrices𝐴 and𝐴′ from (3). The best
response set to a strategy (𝑥, 1 − 𝑥) of PL2 will be all convex
combinations of pure strategies of PL1 that are maximal at
value 𝑥 in the respective plot.

As visualized by Figure 1, the best responses of PL1 to any mixed

strategy of PL2 are the same in 𝐴 and 𝐴′
. However, 𝐴′

cannot be

obtained from 𝐴 through a PAT: If there were such a PAT, then

the payoff from profile (2, 1) requires a shift of 𝑐1

1
= 2. Hence, the

payoff from profile (1, 1) requires a scaling of 𝛼1 = 2

3
. But these

components of a positive affine transformation do not work out for

the payoff from profile (3, 1), leaving us with a contradiction.

Liu [23] develops a polynomial-time method, called bi-affine
transformation, that determines whether two 2-player normal-form

games have the same best response sets. Their procedure detects

which strategies and strategy pairs are essential, and derives that

only the essential pairs need to be in a positive affine relationship.

Hence, their method includes PATs, but it is alsomore powerful than

that. In their PhD thesis, they extend their ideas to 𝑁 -player games

(𝑁 ≥ 3). But in those games, their method downgrades to a suffi-

cient condition: Two 𝑁 -player games (𝑁 ≥ 3) may have the same

best response sets while not being a quasi-affine transformation of

each other. Furthermore, their method becomes computationally

inefficient. In fact, we have shown in Theorem 1 more generally

that determining whether two 3-players games have the same BR

sets is co-NP-hard.
Liu concludes with an immediate open problem for future work:

to characterize games with the same Nash equilibria. To that end,

Du [13] proves that it is NP-complete to decide whether two 2-

player games share a common Nash equilibrium, and that it is

co-NP-hard to decide whether two 2-player games have the same

Nash equilibrium set.

In light of these negative results about characterizing best-response

equivalence and Nash equilibrium equivalence in full generality

- assuming the well-accepted complexity belief co-NP ≠ P - we

restrict our focus to a subclass of equivalence-preserving trans-

formations based on separability. We argue that among naturally

defined subclasses, separable game transformations compose the

most maximal subclass for which it is still open whether it contains

tractable and equivalence-preserving transformations aside from

PATs.

7 TRANSFORMATIONS THAT PRESERVE
NASH EQUILIBRIUM SETS OR BEST
RESPONSE SETS

To our knowledge, the results of this section are all novel unless ex-

plicitly stated otherwise. They can be summarized in the following

statement.

Theorem 2. Let 𝐻 = {𝐻 𝑖 }𝑖∈[𝑁 ] be a separable game transforma-
tion. Then:

𝐻 universally preserves Nash equilibrium sets (i)

⇐⇒ for each player 𝑖 , map 𝐻 𝑖 universally (ii)

preserves best responses

⇐⇒ 𝐻 is a positive affine transformation. (iii)

Lemma 5.3 gives (iii) =⇒ (i), and so the novel part of Theorem 2

is the implication chain (i) =⇒ (ii) =⇒ (iii). The key property that

enables us to develop this chain is that we require the separable

game transformations 𝐻 = {𝐻 𝑖 }𝑖∈[𝑁 ] to be universally applicable,

no matter the game 𝐺 = {𝑢𝑖 }𝑖∈[𝑁 ] we have at hand.
First, let us characterize a special property that a game transfor-

mation can satisfy in which the strategy choice of player 𝑖 does not

influence the map that is being used to transform her utilities.

Definition 7.1. Let map 𝐻 𝑖 come from a separable game trans-

formation 𝐻 . Then we say that 𝐻 𝑖 only depends on the strategy

choices of the opponents if for all pure strategy choices k−𝑖 ∈ 𝑆−𝑖
of the opponents, we have the map identities

ℎ𝑖
1,k−𝑖

= . . . = ℎ𝑖
𝑚𝑖 ,k−𝑖

: R→ R .

Next, we can show (i) =⇒ (ii).



Proposition 7.2. Let 𝐻 = {𝐻 𝑖 }𝑖∈[𝑁 ] be a separable game transfor-
mation that universally preserves Nash equilibrium sets and consider
the map𝐻 𝑖 of a player 𝑖 . Then𝐻 𝑖 only depends on the strategy choices
of the opponents. Furthermore,𝐻 𝑖 universally preserves best responses.

Proof sketch.

First conclusion: Such a universally preserving transformation 𝐻

should in particular not change the Nash equilibrium set for a

trivial game in which all players receive the same constant utility

𝑧 ∈ R from all strategy profiles. In such a game, the whole strategy

set 𝑆 will make the Nash equilibrium set. For that to also be the

case in the transformed game, we show for all player 𝑖 , that the

transformations maps ℎ𝑖
1,k−𝑖

, . . . , ℎ𝑖
𝑚𝑖 ,k−𝑖

must all evaluate the same

on any input value 𝑧.

Second conclusion: Let𝑢𝑖 be an arbitrary utility function of player 𝑖 .

Complete 𝑢𝑖 to a full game 𝐺 by setting the utilities of all other

players to the constant payoff of 0. This makes any strategy 𝑠 𝑗

of another player 𝑗 ≠ 𝑖 always a best response strategy in 𝐺 . We

can then show that this must also hold in the transformed game

𝐻 (𝐺), using the first conclusion. Therefore, we get the following
equivalence chain:

(a) a strategy 𝑠𝑖 of player 𝑖 is a best response to a profile 𝑠−𝑖 of
the opponent players and with respect to 𝑢𝑖 if and only if

(b) (𝑠𝑖 , 𝑠−𝑖 ) is a Nash equilibrium of 𝐺 if and only if

(c) (𝑠𝑖 , 𝑠−𝑖 ) is a Nash equilibrium of 𝐻 (𝐺) if and only if

(d) 𝑠𝑖 a best response to 𝑠−𝑖 with respect to 𝐻 𝑖 (𝑢𝑖 ).
□

The first conclusion captures the intuition that if the maps ℎ𝑖k
from𝐻 𝑖 would depend on the strategy choice of player 𝑖 , then in the

transformed game 𝐻 (𝐺), player 𝑖 may need to adjust her strategy

choice to those ℎ𝑖k that map payoffs to high values. This would

affect the strategic decision making of player 𝑖 and therefore the

Nash equilibrium set overall. Similar reasoning provides us with a

related (but independent) result:

Lemma 7.3. Suppose a map 𝐻 𝑖 universally preserves best responses.
Then 𝐻 𝑖 only depends on the strategy choices of the opponents.

Due to Proposition 7.2, we can transition to the analysis of trans-

formation maps 𝐻 𝑖 that universally preserve best responses. Thus

from now on, our results also become relevant to game theory

research that focuses on best response sets, such as best response

dynamics or fictitious play.

Proposition 7.2 moreover allows us to restrict our analysis to the

map 𝐻1
for PL1 w.l.o.g. because any results for 𝐻1

will analogously

also hold for maps 𝐻2, . . . , 𝐻𝑁 . By Lemma 7.3, we can also drop

the dependence of 𝐻1
on 𝑘1 and write

𝐻1
:=

{
ℎ1

k−1

: R −→ R
}
k−1∈𝑆−1

.

For each pure-strategy map ℎ1

k−1

we introduce its distance distortion
function which takes two utility values and measures their distance

after a ℎ1

k−1

-transformation:

Δℎ1

k−1

: R × R −→ R

(𝑧,𝑤) ↦−→ ℎ1

k−1

(𝑧) − ℎ1

k−1

(𝑤) .
(4)

The upcoming lemma reveals an important preliminary obser-

vation on how the distance distortion functions Δℎ1

k−1

relate to

each other. It highlights how the distorted utility distances are con-

nected upon a strategy change of a player 𝑗 ≠ 1 from, e.g., some

pure strategy 𝑘 𝑗 ≠ 1 to their first pure strategy 1 ∈ [𝑚 𝑗 ]. It is
again crucial that 𝐻1

preserves best responses universally in order

to deduce these global properties of and connections between the

maps within 𝐻1
.

Lemma 7.4. Suppose transformation map 𝐻1 universally preserves
best responses. Take a player 𝑗 ∈ [𝑁 ] \{1} and profile k−1 ∈ 𝑆−1 with
𝑘 𝑗 ≠ 1. Define k′−1

∈ 𝑆−1 to be the same as k−1 except for player 𝑗 ’s
choice which shall be set to 𝑘′

𝑗
= 1. Then, for all 𝑧, 𝑧′,𝑤,𝑤 ′ ∈ R:

𝑧 −𝑤 ≥ 𝑧′ −𝑤 ′ ⇐⇒ Δℎ1

k−1

(𝑧,𝑤) ≥ Δℎ1

k′−1

(𝑧′,𝑤 ′) . (5)

Proof sketch. Construct a utility function 𝑢1
for each set of

values for 𝑗, k−1, 𝑧, 𝑧
′,𝑤 , and 𝑤 ′

. Namely, set 𝑢1 (1, k−1) := 𝑧 and

𝑢1 (1, k′−1
) := 𝑤 ′

, and for all strategies 𝑙 ∈ [𝑚1]\{1} set𝑢1 (𝑙, k−1) :=

𝑤 and 𝑢1 (𝑙, k′−1
) := 𝑧′. Observe that uniformly randomizing over

k−1 and k′−1
not only makes a correlated strategy of the opponents,

but also a valid mixed strategy profile. Hence, the left hand side

of (5) can be reinterpreted as strategy 1 ∈ [𝑚1] performing better

for player 1 than any other of her strategies 𝑙 ∈ [𝑚1] \{1} if player 𝑗
uniformly mixes over strategies 𝑘 𝑗 and 𝑘

′
𝑗
and if all other players

𝑟 ∉ {1, 𝑗} play their respective strategy 𝑘𝑟 ∈ [𝑚𝑟 ]. We then derive

equivalence (5) by using that 𝐻1
preserves strategy 1 being such a

best response and by using Lemma 7.3. □

Next, observe that by definition, these distance distortion func-

tions are skew-symmetric, that is,

∀𝑧,𝑤 ∈ R : Δℎ1

k−1

(𝑧,𝑤) = −Δℎ1

k−1

(𝑤, 𝑧) .

With the upcoming lemma, we further tighten the connection

between the pure-strategy maps ℎ1

k−1

through their distance dis-

tortion functions. Last but not least, we shine some light on how

those maps ℎ1

k−1

behave individually in the subsequent lemma.

Lemma 7.5. Suppose transformation 𝐻1 universally preserves best
responses. Then the pure-strategymaps in𝐻1 equally distort distances:

∀k−1 ∈ 𝑆−1
: Δℎ1

k−1

= Δℎ1

1−1

where 1−1 := (1, . . . , 1) ∈ 𝑆−1.

Proof sketch. Make iterative use of Lemma 7.4 for all other

players 𝑗 ≠ 1, and make use of the skew-symmetry. □

Lemma 7.6. Suppose transformation 𝐻1 universally preserves best
responses. Then we obtain for all k−1 ∈ 𝑆−1 that

(1) map ℎ1

k−1

is strictly increasing, and that

(2) map ℎ1

k−1

distorts distances independently of their reference
points:

∀𝑧, 𝑧′, 𝜆 ∈ R : Δℎ1

k−1

(𝑧 + 𝜆, 𝑧) = Δℎ1

k−1

(𝑧′ + 𝜆, 𝑧′) .

Proof sketch. For the first conclusion make use of Lemma 7.4

for values 𝑧′ = 𝑤 ′
, and of Lemma 7.5. For the second conclusion,

utilize skew-symmetry together with the same two lemmata. □



With Lemmata 7.5 and 7.6, we can finally show that positive

affine transformations are the only game transformations that uni-

versally preserve best responses. Intuitively speaking, the second

conclusion of Lemma 7.6 states that taking a step of length 𝜆 in

the domain space consistently maps to taking a step of some other

length in the range space, independently of the base point 𝑧 from

which we take such a step. This brings us to two known results

from the analysis literature. Recall that a function ℎ : R −→ R is

called linear if there exists some 𝑎 ∈ R such that

∀𝑧 ∈ R : ℎ(𝑧) = 𝑎𝑧 .

A function ℎ : R −→ R is said to be additive if it satisfies

∀𝑥,𝑦 ∈ R : ℎ(𝑥 + 𝑦) = ℎ(𝑥) + ℎ(𝑦) .

Lemma 7.7 ([12, 36]). If a map ℎ : R −→ R is monotone and
additive, then it is also linear.

Corollary 7.8. Let ℎ : R −→ R be monotone and satisfy for all
𝑧, 𝑧′, 𝜆 ∈ R:

ℎ(𝑧 + 𝜆) − ℎ(𝑧) = ℎ(𝑧′ + 𝜆) − ℎ(𝑧′) .

Then h is affine linear, i.e., there exist some 𝑎, 𝑐 ∈ R such that for all

∀𝑧 ∈ R : ℎ(𝑧) = 𝑎𝑧 + 𝑐 .

This brings us to the completion of this section.

Proof sketch of Theorem 2.

Implication (iii) =⇒ (i) follows from Lemma 5.3, and implica-

tion (i) =⇒ (ii) follows from Proposition 7.2. For (ii) =⇒ (iii),

recall that by symmetry, our results for 𝐻1
hold analogously for

all maps 𝐻 𝑖 . By Lemmata 7.3 and 7.6, the maps ℎ𝑖k = ℎ𝑖k−𝑖
sat-

isfy the conditions of Corollary 7.8. Thus, there exist parameters

𝑎𝑖k−𝑖
, 𝑐𝑖k−𝑖

∈ R for each k−𝑖 ∈ 𝑆−𝑖 such that

∀𝑧 ∈ R : ℎ𝑖k−𝑖
(𝑧) = 𝑎𝑖k−𝑖 · 𝑧 + 𝑐

𝑖
k−𝑖

.

Lemma 7.5 implies 𝑎𝑖k−𝑖
= 𝑎𝑖1−𝑖 for all k−𝑖 ∈ 𝑆

−𝑖
. Therefore, we only

have to keep track of one scaling parameter 𝛼𝑖 for all the maps

within𝐻 𝑖 . With the first conclusion of Lemma 7.6, we obtain 𝛼𝑖 > 0.

Putting everything together, we have shown that𝐻 = (𝐻1, . . . , 𝐻𝑁 )
makes a positive affine transformation.

□

Theorem 2 gives two novel equivalent characterizations of PATs

that highlight their special status among game transformations:

PATs are the only types of separable game transformations that

always preserve the Nash equilibrium set or, respectively, the best

response sets.

One way to circumvent this result is to focus on game trans-

formations that we only care to apply on particular subclasses of

𝑁 -player games. Preferably, the game properties defining such a

subclass would be generic enough to still contain "most" games. On

the other hand, one may instead also consider non-separable game

transformations as discussed in Section 6.

8 FURTHER RELATED LITERATURE
Strategic Similarity. Much work has gone into identifying when

two games can be considered strategically equivalent.

Strategic similarity, for example, is an important aspect of Po-

tential Games (cf. Monderer and Shapley [28]). Morris and Ui [29]

noted that a game𝐺 is a weighted potential game if and only if it is

the PAT transformation of an identical interest game
4
. This charac-

terization has been used to analyze the Nash equilibria and solvers

of potential games. The main contribution of Morris and Ui, how-

ever, was to characterize when two given games are best-response
equivalent, better-response equivalent or von Neumann-Morgenstern
equivalent. Two games are best-response equivalent if they have

the same best response sets. Better-response equivalency requires

that each player’s induced preferences over her strategies - given

the strategy choices of her opponents - are the same in both games.

This equivalency concept has also been characterized by Moulin

and Vial [30]. Von Neumann-Morgenstern equivalency requires

that the games only differ by a PAT. Unfortunately, we were not able

to base the second part of Theorem 2 on the insights from Morris

and Ui because their characterization for best-response equivalence

only holds for games that satisfy specific properties.

Hammond [18] described that the strategic decision-making

in a game in mixed strategies does not depend on the player’s

numerical utility values, but solely on the preferences that the

utility functions induce over the strategies. In the appendix, we

give some further background on utility theory in order to put

Hammond’s work into our context. Using the Expected Utility

Theorem - cf., e.g., Mas-Colell et al. [25]) - Hammond deduced that

utility functions that induce the same preferences can only differ

up to a positive affine transformation. Note, that the property of

preserving the player’s preferences is, in general, strictly harder to

satisfy than preserving best responses (and, hence, Nash equilibria).

Thus, our Theorem 2 generalizes their result to the broader question

of strategic equivalence.

Moving to more broader related work, Gabarró et al. [15, 16]

gave several complexity-theoretic results to the problem of decid-

ing whether two pure strategy games are isomorphic w.r.t. a notion
of game transformation that can help us understand the symme-

tries within a game [19, Chapter 3]. McKinsey [27] and Chang

and Tijs [10] studied two notions of game equivalency specific to

cooperative games.

Game Transformations. There are other lines of related research

that work more explicitly with different notions of transforming a

game. For example, Pottier and Nessah [33] take interest in game

transformations that convert the Berge-Vaisman equilibria of a

game to the Nash equilibria of the transformed game. Game trans-

formations that preserve strategic features were also studied by Wu

et al. [41] for Bayesian games and by [9, 14, 21, 37] for extensive-

form games.

9 CONCLUSION
In this paper, we first gave hardness results about deciding whether

a strategy constitutes a best response or whether two games have

4
Identical interest game: Given an action profile 𝑠 , each player shall receive the same

utility from 𝑠 .



the same best response sets. Next, we introduced separable game

transformations for multiplayer games, and define the properties

(i) universally preserving Nash equilibrium sets and (ii) universally

preserving best responses. It is well-known that PATs universally

preserve Nash equilibrium sets. We showed that separable game

transformations which universally preserve Nash equilibrium sets

also universally preserve best responses. In the subsequent results,

we derived further that if a separable game transformation univer-

sally preserves best responses then it is a positive affine transfor-

mation.

When faced with a strategic interaction - whether only once or

on a regular basis - it can be highly beneficial to consider equivalent

variations of it that are easier to analyze. The current literature on

game theory and on decision making in AI are lacking methods to

detect or generate such strategic equivalent games. Our discussion

and results can explain this observation. Simultaneously, we are able

to highlight how special PATs are with regard to Nash equilibrium

sets and best response sets. Going forward, we hope that our results

can serve as guidance to the development of any such detection or

generation toolkit.
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A PROOFS OF SECTION 4
To our knowledge, the results and proofs of this section are all novel

unless explicitly stated otherwise.

Definition (CheckIfEverBR). Given a 3-player normal-form game,

does there exist mixed strategies r ∈ Δ(𝑆2) of PL2 and s ∈ Δ(𝑆3)
of PL3 such that pure strategy 1 of PL1 is a best response to (r, s)?

In general, for computational problems involving𝑁 -player games

𝐺 with strategy sets (𝑆𝑖 )𝑖∈[𝑁 ] and utility functions (𝑢𝑖 )𝑖∈[𝑁 ] , we
are interested in their computational complexities in terms of

∑
𝑖 |𝑆𝑖 |

and the binary encoding of all utility payoffs

(
𝑢𝑖 (s)

)
s∈𝑆,𝑖∈[𝑁 ]

. For

that, we require that utility payoffs take on rational values only.

We aim to prove Proposition 4.2:

Proposition. CheckIfEverBR is NP-hard.

We achieve this by a reduction from the BiCliqe problem. Recall

that a bipartite graph 𝐺 = (𝑉 ∪𝑊, 𝐸) is an undirected graph such

that each edge 𝑒 ∈ 𝐸 has one endpoint in 𝑉 and the other in𝑊 .

Definition (BiCliqe). Given a bipartite graph 𝐺 = (𝑉 ∪𝑊, 𝐸)
and integer 1 ≤ 𝐾 ≤ 𝑚 + 𝑛, are there subsets 𝑉 ∗ ⊆ 𝑉 and𝑊 ∗ ⊆𝑊
with |𝑉 ∗ | = 𝐾 = |𝑊 ∗ | and (𝑣,𝑤) ∈ 𝐸 for all 𝑣 ∈ 𝑉 ∗,𝑤 ∈𝑊 ∗

?

For problems involving bipartite graphs 𝐺 = (𝑉 ∪𝑊, 𝐸), we are
interested in their computational complexities in terms of𝑚 := |𝑉 |,
𝑛 := |𝑊 | and 𝑙 := |𝐸 |.

The complexity of BiCliqe is known in the literature.

Lemma (Garey and Johnson [17], Problem GT24). BiCliqe is
NP-complete.

Before we get to the proof of Proposition 4.2, let us give a trivial

yes instance and a trivial no instance of CheckIfEverBR. This will

be used in the proof.

The trivial yes instance shall be 𝑆1 = {1} = 𝑆2 = 𝑆3
and

𝑢1 (1, 1, 1) = 0 = 𝑢2 (1, 1, 1) = 𝑢3 (1, 1, 1). Then pure strategy 1

of PL1 is a best response to (1, 1).
The trivial no instance shall be 𝑆1 = {1, 2}, 𝑆2 = {1} = 𝑆3

,

𝑢1 (1, 1, 1) = 0 = 𝑢2 (·, 1, 1) = 𝑢3 (·, 1, 1) and 𝑢1 (2, 1, 1) = 1. Then

pure strategy 1 is strictly dominated by 2 and therefore never a best

response to a profile of the opponents.

Proof of Proposition 4.2.

Reduction from BiCliqe. Let 𝐺 = (𝑉 ∪𝑊, 𝐸) and 1 ≤ 𝐾 ≤ 𝑚 + 𝑛
be the BiCliqe instance.

Trivial cases: Let us first remove a couple of edge cases. They are

not mutually exclusive, but one can just check these case conditions

in the following order until one is satisfied (if at all).

Case 1: If 𝐾 ≥ min{𝑚,𝑛} + 1. Then we have a no instance of

BiCliqe. So construct the trivial no instance of CheckIfEverBR.

Case 2: If 𝐾 = 𝑚, check in O(𝑛𝑚) time by going through𝑊 if

there are at least 𝐾-many vertices𝑤 ∈𝑊 that satisfy (𝑣,𝑤) ∈ 𝐸 for

all 𝑣 ∈ 𝑉 . If so, then we have a yes instance of BiCliqe by setting

𝑉 ∗ = 𝑉 and𝑊 ∗
equal to the 𝐾-many found𝑤 ’s. So construct the

trivial yes instance of CheckIfEverBR. If they do not exist, however,

then we have a no instance of BiCliqe because we couldn’t find set

𝑊 ∗
of size 𝐾 that matches the only possibility𝑉 ∗ = 𝑉 . So construct

the trivial no instance of CheckIfEverBR.

Case 3: If 𝐾 = 𝑛, do the analogous procedure as in Case 2, except

with reversed roles for 𝑣 and𝑤 .

Case 4: If 𝐾 =𝑚 − 1, check in O(𝑚𝑛𝑚) time if there exists 𝑣 ∈ 𝑉
such that are at least𝐾-many vertices𝑤 ∈𝑊 that satisfy (𝑣,𝑤) ∈ 𝐸
for all 𝑣 ∈ 𝑉 \ {𝑣}. If so, then we have a yes instance of BiCliqe

by setting𝑉 ∗ = 𝑉 \ {𝑣} and𝑊 ∗
equal to the 𝐾-many found𝑤 ’s. So

construct the trivial yes instance of CheckIfEverBR. If they do not

exist, however, then we have a no instance of BiCliqe because we

couldn’t find set𝑊 ∗
of size 𝐾 that matches the only possibilities

𝑉 ∗ = 𝑉 \ {𝑣} for some {𝑣} ∈ 𝑉 . So construct the trivial no instance

of CheckIfEverBR.

Case 5: If 𝐾 = 𝑛 − 1, do the analogous procedure as in Case 4,

except with reversed roles for 𝑣 and𝑤 .

Case 6: If neither of the previous case conditions are satisfied.

The rest of this proof is considering this case now.

Construction of the corresponding CheckIfEverBR instance: Set
𝑆2 = 𝑉 , 𝑆3 =𝑊 and 𝑆1 = {1}∪{𝑣}𝑣∈𝑉 ∪{𝑤}𝑤∈𝑊 ∪{(𝑣,𝑤)} (𝑣,𝑤 )∉𝐸 .
Intuitively, we want to interpret a mixed strategy r of PL2 as PL2
choosing the support supp(r) := {𝑣 ∈ 𝑉 : r(𝑣) > 0} as the subset
𝑉 ∗

of 𝑉 for the biclique. Analogously, the support of s of PL3 shall
give the subset𝑊 ∗

of𝑊 for the biclique. We make a strategy 𝑣 (resp.

𝑤 ) of PL1 very attractive for PL1 in the case that PL2 (resp. PL3) play

their corresponding strategy 𝑣 (resp.𝑤 ) with too much probability.

This accomplishes that in any potential certificate (r, s), PL2 and PL3
mix over at least 𝐾 strategies. We also make a strategy (𝑣,𝑤) ∉ 𝐸
of PL1 very attractive for PL1 in the case that PL2 and PL3 both

play their corresponding strategies 𝑣 and 𝑤 with any significant

probability. This accomplishes that in any potential certificate (r, s),
PL2 and PL3 put non-negligible weight on strategies 𝑣 and𝑤 only

if (𝑣,𝑤) ∈ 𝐸. Let us proceed with the actual utility payoffs.

Set 𝑢2 (·, ·, ·) = 0 = 𝑢3 (·, ·, ·) because those payoffs are irrelevant.
Next, set 𝑢1 (1, ·, ·) = 1. Finally, set

∀𝑣, 𝑣 ′ ∈ 𝑉 : 𝑢1 (𝑣, 𝑣 ′, ·) =
{
𝐾 + 1 if 𝑣 = 𝑣 ′

0 if 𝑣 ≠ 𝑣 ′
,

∀𝑤,𝑤 ′ ∈𝑊 : 𝑢1 (𝑤, ·,𝑤 ′) =
{
𝐾 + 1 if𝑤 = 𝑤 ′

0 if𝑤 ≠ 𝑤 ′ ,

and

∀(𝑣,𝑤) ∉ 𝐸 : 𝑢1

(
(𝑣,𝑤), 𝑣 ′,𝑤 ′

)
={

(𝑚 − 𝐾) (𝑛 − 𝐾) (𝐾 + 1)2
if (𝑣,𝑤) = (𝑣 ′,𝑤 ′)

0 if (𝑣,𝑤) ≠ (𝑣 ′,𝑤 ′)
.

Note that by assumption of not being in Cases 1, 2, and 3, we have

(𝑚 − 𝐾) (𝑛 − 𝐾) (𝐾 + 1)2 > 0.

Analysis of the corresponding CheckIfEverBR instance: First,
we observe that for any mixed strategies r ∈ Δ(𝑆2) of PL2 and

s ∈ Δ(𝑆3) of PL3, we have:

∀𝑣 ∈ 𝑉 : 𝑢1 (𝑣, r, s) =
∑︁

𝑣′∈𝑉 ,𝑤′∈𝑊
r(𝑣 ′)s(𝑤 ′)𝑢1 (𝑣, 𝑣 ′,𝑤 ′)

=
∑︁
𝑤′∈𝑊

r(𝑣)s(𝑤 ′) (𝐾 + 1)

= r(𝑣) (𝐾 + 1) ,



and, analogously,

∀𝑤 ∈𝑊 : 𝑢1 (𝑤, r, s) = s(𝑤) (𝐾 + 1) ,

and

∀(𝑣,𝑤) ∉ 𝐸 :

𝑢1

(
(𝑣,𝑤), r, s

)
=

∑︁
𝑣′∈𝑉 ,𝑤′ 𝑖𝑛𝑊

r(𝑣 ′)s(𝑤 ′)𝑢1

(
(𝑣,𝑤), 𝑣 ′,𝑤 ′

)
= r(𝑣)s(𝑤) (𝑚 − 𝐾) (𝑛 − 𝐾) (𝐾 + 1)2 .

Therefore, pure strategy 1 is a best response to (r, s) if and only if

∀𝑣 ∈ 𝑉 : r(𝑣) = 1

𝐾 + 1

𝑢1 (𝑣, r, s)

≤ 1

𝐾 + 1

𝑢1 (1, r, s) =
1

𝐾 + 1

,

(6)

∀𝑤 ∈𝑊 : s(𝑤) = 1

𝐾 + 1

𝑢1 (𝑤, r, s)

≤ 1

𝐾 + 1

𝑢1 (1, r, s) =
1

𝐾 + 1

,

(7)

and

∀(𝑣,𝑤) ∉ 𝐸 :

r(𝑣) (𝑚 − 𝐾) (𝐾 + 1) · s(𝑤) (𝑛 − 𝐾) (𝐾 + 1)

= 𝑢1

(
(𝑣,𝑤), r, s

)
≤ 𝑢1 (1, r, s) = 1 .

(8)

Equivalence of BiCliqe and its corresponding CheckIfEverBR
instance: Suppose the BiCliqe instance be yes instance that falls

into Case 6. Let furthermore 𝑉 ∗
and𝑊 ∗

be a biclique certificate.

Then, in the corresponding CheckIfEverBR instance, choose the

following strategies (r, s) for PL2 and PL3: for 𝑣 ∈ 𝑉 set

r(𝑣) =
{

1

𝐾+1
if 𝑣 ∈ 𝑉 ∗

1

𝑚−𝐾
1

𝐾+1
if 𝑣 ∉ 𝑉 ∗ ,

and for𝑤 ∈𝑊 set

s(𝑤) =
{

1

𝐾+1
if𝑤 ∈𝑊 ∗

1

𝑛−𝐾
1

𝐾+1
if𝑤 ∉𝑊 ∗ .

Vectors r and s form well-defined mixed strategies because we are

not in Cases 1, 2, and 3, and because∑︁
𝑣∈𝑉

r(𝑣) =
∑︁
𝑣∈𝑉 ∗

r(𝑣) +
∑︁
𝑣∉𝑉 ∗

r(𝑣)

=
∑︁
𝑣∈𝑉 ∗

1

𝐾 + 1

+
∑︁
𝑣∉𝑉 ∗

1

𝑚 − 𝐾
1

𝐾 + 1

= 𝐾
1

𝐾 + 1

+ (𝑚 − 𝐾) 1

𝑚 − 𝐾
1

𝐾 + 1

= 1 ,

and analogously

∑
𝑤∈𝑊 s(𝑤) = 1 . Moreover, conditions (6), (7), and

(8) are all satisfied. Hence, pure strategy 1 of PL1 is a best response to

(r, s), and, therefore, the corresponding CheckIfEverBR instance

a yes instance as well.

Now suppose the BiCliqe instance falls into Case 6 and the

corresponding CheckIfEverBR instanc is a yes instance. Let fur-

thermore (r, s) be the strategy certificate of PL2 and PL3 to which

pure strategy 1 of PL1 is a best response. Then, in the BiCliqe

instance we started with, consider the sets

𝑉 :=

{
𝑣 ∈ 𝑉 : r(𝑣) > 1

𝑚 − 𝐾
1

𝐾 + 1

}
, (9)

and

𝑊̄ :=

{
𝑤 ∈𝑊 : s(𝑤) > 1

𝑛 − 𝐾
1

𝐾 + 1

}
.

Then, we have for all 𝑣 ∈ 𝑉 and𝑤 ∈ 𝑊̄ :

r(𝑣) (𝑚 − 𝐾) (𝐾 + 1) · s(𝑤) (𝑛 − 𝐾) (𝐾 + 1) > 1 .

Therefore, since (r, s) satisfies condition (8) by assumption, we get

for all 𝑣 ∈ 𝑉 and 𝑤 ∈ 𝑊̄ that (𝑣,𝑤) ∈ 𝐸. Further below, we show
|𝑉 |, |𝑊̄ | ≥ 𝐾 . Therefore, choose any 𝑉 ∗ ⊆ 𝑉 and𝑊 ∗ ⊆ 𝑊̄ with

|𝑉 ∗ | = 𝐾 = |𝑊 ∗ |, and (𝑉 ∗,𝑊 ∗) makes a biclique certificate of the

BiCliqe instance. This shows that the BiCliqe is therefore a yes

instance as well.

Proving the subclaim that |𝑉 |, |𝑊̄ | ≥ 𝐾 : We only prove |𝑉 | ≥ 𝐾

since |𝑊̄ | ≥ 𝐾 is proven analogously. We derive

1 =
∑︁
𝑣∈𝑉

r(𝑣) =
∑︁
𝑣∈𝑉 ∗

r(𝑣) +
∑︁
𝑣∉𝑉 ∗

r(𝑣)

(6),(9)
≤

∑︁
𝑣∈𝑉

1

𝐾 + 1

+
∑︁
𝑣∉𝑉

1

𝑚 − 𝐾
1

𝐾 + 1

= |𝑉 | 1

𝐾 + 1

+ (𝑚 − |𝑉 |) 1

𝑚 − 𝐾
1

𝐾 + 1

.

Recall that (𝑚 − 𝐾) (𝐾 + 1) > 0 since we are not in Cases 1 and 2

(resp. 3). Moving all terms to one side in the above inequality chain

and multiplying it by (𝑚 − 𝐾) (𝐾 + 1) yields
0 ≤ (𝑚 − 𝐾) |𝑉 | + (𝑚 − |𝑉 |) − (𝑚 − 𝐾) (𝐾 + 1)
=𝑚 |𝑉 | − 𝐾 |𝑉 | +𝑚 − |𝑉 | −𝑚𝐾 −𝑚 + 𝐾2 + 𝐾
=𝑚( |𝑉 | − 𝐾) − 𝐾 ( |𝑉 | − 𝐾) − (|𝑉 | − 𝐾)
= (𝑚 − 𝐾 − 1) ( |𝑉 | − 𝐾) .

By Cases 1, 2 (resp. 3), and 4 (resp. 5), we have𝐾 ≤ 𝑚−2. Therefore,

we can divide the above inequality chain by𝑚 − 𝐾 − 1 to obtain

|𝑉 | ≥ 𝐾 . □

Proposition 4.2 allows us to study the following decision problem

next.

Definition (CheckIfSameBRs). Given two 3-player normal-form

games with strategy set 𝑆1 × 𝑆2 × 𝑆3
, do they have the same best

response sets?

Theorem. CheckIfSameBRs is co-NP-hard.

Proof. We show that its complement, whichwe denote as Check-

IfDiffBRs, is NP-hard by a reduction from CheckIfEverBR. Given

two 3-player normal-form games with strategy set 𝑆1 × 𝑆2 × 𝑆3

and utility functions (𝑢𝑖 )𝑖 and (𝑢′
𝑖
)𝑖 respectively, CheckIfDiffBRs

asks whether there exists a mixed strategy profile s−𝑖 ∈ Δ(𝑆−𝑖 ) for
some player 𝑖 ∈ {1, 2, 3} such that the best response sets BR𝑢𝑖 (s−𝑖 )
and BR𝑢′

𝑖
(s−𝑖 ) differ.

Let 𝐺 be an instance of CheckIfEverBR, that is, a 3-player

normal-form game. Denote its strategy set with 𝑆1 × 𝑆2 × 𝑆3
and

its utility functions with (𝑢𝑖 )𝑖 . Determine a strict lower bound

𝐿 := −1 + mins∈Δ(𝑆 )
{
𝑢1 (s)

}
on the utilities PL1 may receive in 𝐺 .



Construct another game 𝐺 ′
with the same strategy set as 𝐺 and

with utility functions 𝑢′
2

:= 𝑢2, 𝑢
′
3

:= 𝑢3, and

𝑢1 (𝑘1, 𝑘2, 𝑘3) :=

{
𝐿 if 𝑘1 = 1

𝑢1 (𝑘1, 𝑘2, 𝑘3) if 𝑘1 ≠ 1

for all (𝑘1, 𝑘2, 𝑘3) ∈ 𝑆 . Then (𝐺,𝐺 ′) shall be the corresponding

CheckIfDiffBRs instance. Let us prove equivalence.

Suppose 𝐺 is a yes instance of CheckIfEverBR. Let (s2, s3) ∈
Δ(𝑆2) ×Δ(𝑆3) be the strategy certificate to which pure strategy 1 of

PL1 is a best response, i.e., 1 ∈ BR𝑢1
(s2, s3). PL1 has a second strat-

egy (by the definition of a game), and by construction of 𝐿, strategy

1 is strictly dominated by strategy 2 in𝐺 ′
for PL1. Therefore, 1 can

never be a best response in𝐺 ′
for PL1. In particular, 1 ∉ BR𝑢1

(s2, s3).
Hence, (𝐺,𝐺 ′) is a yes instance of CheckIfDiffBRs as well.

Suppose (𝐺,𝐺 ′) is a yes instance of CheckIfDiffBRs. Since

PL2 and PL3 receive the same utilities in 𝐺 and 𝐺 ′
, their best re-

sponse sets will be equal. Therefore, the difference in best response

sets must be for PL1, that is, there exists a strategy certificate

(s2, s3) ∈ Δ(𝑆2) × Δ(𝑆3) for which BR𝑢1
(s2, s3) ≠ BR𝑢′

1

(s2, s3).
By Corollary 13, this means that the two sets do not contain the

same pure best responses. Let us treat three imaginable situations

(which are not mutually exclusive) separately.

Situation 1: We have 1 ∈ BR𝑢1
(s2, s3) but 1 ∉ BR𝑢′

1

(s2, s3). Then,
we are done because this shows that 𝐺 is also a yes instance of

CheckIfEverBR.

Situation 2: There exists a pure strategy 𝑘 ∈ 𝑆1 \ {1} with 𝑘 ∈
BR𝑢1

(s2, s3) but 𝑘 ∉ BR𝑢′
1

(s2, s3). Note that 𝑢′
1
only differs from 𝑢1

in how much utility strategy 1 ∈ 𝑆1
yields under 𝑢′

1
and 𝑢1, namely,

less under 𝑢′
1
. Thus, if 𝑘 ≠ 2 was a maximizer of 𝑢1 (·, s2, s3), then it

must still be a maximizer of 𝑢′
1
(·, s2, s3). So this situation will never

occur because its premise will never hold.

Situation 3: There exists a pure strategy𝑘 ∈ 𝑆1
with𝑘 ∈ BR𝑢′

1

(s2, s3)
but 𝑘 ∉ BR𝑢1

(s2, s3). Then 𝑘 ≠ 1 because 1 ∈ 𝑆1
is never a best

response in 𝐺 ′
. Moreover, since the only change from 𝑢1 to 𝑢′

1
is a

decreased payoff of strategy 1 ∈ 𝑆1
, this Situation 3 can only hap-

pen if 1 ∈ 𝑆1
is the sole maximizer of𝑢1 (·, s2, s3). Thus, we are done

because this shows that𝐺 is also a yes instance of CheckIfEverBR.

In conclusion, we have shown overall that CheckIfDiffBRs is

NP-hard, and thus, CheckIfSameBRs is co-NP-hard. □

B PROOFS OF SECTION 7
To our knowledge, the results and proofs of this section are all

novel.

First, some further notation for this appendix. We may write

𝑢 ≡ 𝜆 to refer to a function 𝑢 : D −→ R that is a constant function

on its domain D, set to the value 𝜆 ∈ R. Moreover, let 𝑒𝑘 ∈ R𝑛
(𝑀 ∈ N) stand for the 𝑘-th standard basis vector, i.e., with a 1 in

its 𝑘-th entry and 0’s anywhere else. Finally, in a game 𝐺 and for

a player 𝑖 with pure strategy set 𝑆𝑖 = [𝑚𝑖 ], we identify any pure

strategy 𝑘 ∈ [𝑚𝑖 ] with its corresponding mixed strategy vector in

Δ(𝑆𝑖 ) which is exactly the basis vector 𝑒𝑘 ∈ R𝑚𝑖
.

Proposition. Let 𝐻 = {𝐻 𝑖 }𝑖∈[𝑁 ] be a separable game transforma-
tion that universally preserves Nash equilibrium sets and consider the
map 𝐻 𝑖 of a player 𝑖 . Then 𝐻 𝑖 only depends on the strategy choices
of the opponents. Moreover, 𝐻 𝑖 universally preserves best responses.

Proof. Take a separable game transformation 𝐻 = {𝐻 𝑖 }𝑖∈[𝑁 ]
that universally preserves Nash equilibrium sets and fix some

player 𝑖 .

1. Fix a pure strategy choice k−𝑖 ∈ 𝑆−𝑖 of the opponent players
and take some arbitrary value 𝑧 ∈ R. Consider the game 𝐺 =

{𝑢 𝑗 } 𝑗∈[𝑁 ] with constant utility functions 𝑢 𝑗 ≡ 𝑧 for all 𝑗 ∈ [𝑁 ].
Then, the Nash equilibrium set will be the whole strategy space

Δ(𝑆). By assumption on 𝐻 , the transformed game 𝐻 (𝐺) also has

the full strategy space as its set of Nash equilibria. In particular,

each of the strategy profiles (1, k−𝑖 ), . . . , (𝑚𝑖 , k−𝑖 ) will be a Nash
equilibrium of the transformed game 𝐻 (𝐺). Hence, for all 2 ≤ 𝑙 ≤
𝑚𝑖 :

ℎ𝑖
1,𝑘−𝑖

(𝑧) 𝑢𝑖≡𝑧= ℎ𝑖
1,k−𝑖

(
𝑢𝑖 (1, k−𝑖 )

) (2)
= 𝐻 𝑖 (𝑢𝑖 ) (1, k−𝑖 )

Nash-Eq

= max

𝑡𝑖 ∈Δ(𝑆𝑖 )

{
𝐻 𝑖 (𝑢𝑖 ) (𝑡𝑖 , k−𝑖 )

}
Nash-Eq

= 𝐻 𝑖 (𝑢𝑖 ) (𝑙, k−𝑖 )

= ℎ𝑖
𝑙,k−𝑖

(
𝑢𝑖 (𝑙, k−𝑖 )

)
= ℎ𝑖

𝑙,k−𝑖
(𝑧) .

Since 𝑧 and 𝑙 were chosen arbitrarily, we get

ℎ𝑖
1,k−𝑖

= . . . = ℎ𝑖
𝑚𝑖 ,k−𝑖

.

2. Fix player 𝑖’s utility function 𝑢𝑖 and the opponents’ strategy

choices s−𝑖 ∈ Δ(𝑆−𝑖 ). Then by C.1, it suffices to identify the pure

strategies in the best response sets BR𝑢𝑖 (s−𝑖 ) and BR𝐻 𝑖 (𝑢𝑖 ) (s
−𝑖 ).

Complete the prefixed𝑢𝑖 to a full game𝐺 = {𝑢 𝑗 } 𝑗∈[𝑁 ] by setting
𝑢 𝑗 ≡ 0 for the other players 𝑗 ≠ 𝑖 . Then, the best response set of a

player 𝑗 ≠ 𝑖 is her whole strategy space Δ(𝑆 𝑗 ). By assumption on

the game transformation 𝐻 , we get for a pure strategy 𝑒𝑙 = 𝑙 ∈ 𝑆𝑖 :

𝑒𝑙 ∈ BR𝑢𝑖 (s−𝑖 )
⇐⇒ (𝑒𝑙 , s−𝑖 ) is a Nash equilibrium for the game 𝐺

⇐⇒ (𝑒𝑙 , s−𝑖 ) is a Nash equilibrium for the game 𝐻 (𝐺)
def⇐⇒ 𝑒𝑙 ∈ BR𝐻 𝑖 (𝑢𝑖 ) (s

−𝑖 ) and ∀𝑗 ≠ 𝑖 :

𝑠 𝑗 ∈ BR𝐻 𝑗 (𝑢 𝑗 ) (𝑠
1, . . . , 𝑠 𝑗−1, 𝑠 𝑗+1, . . . ,

𝑠𝑖−1, 𝑒𝑙 , 𝑠
𝑖+1, . . . , 𝑠𝑁 )

(∗)
⇐⇒ 𝑒𝑙 ∈ BR𝐻 𝑖 (𝑢𝑖 ) (s

−𝑖 )

Let us give some further explanation for step (∗). Recall the defini-
tion for a strategy 𝑠 𝑗 , 𝑗 ≠ 𝑖 , to be a best response to the opponents’

strategy choices (𝑠1, . . . , 𝑠 𝑗−1, 𝑠 𝑗+1, . . . , 𝑠𝑖−1, 𝑠𝑖 := 𝑒𝑙 , 𝑠
𝑖+1, . . . 𝑠𝑁 ):

𝑠 𝑗 ∈ argmax

𝑡 𝑗 ∈Δ(𝑆 𝑗 )

{ ∑︁
k∈𝑆

𝑠1

𝑘1

· . . . · 𝑠𝑖−1

𝑘𝑖−1

· 𝑡𝑖
𝑘𝑖

· 𝑠𝑖+1

𝑘𝑖+1

· . . . · 𝑠𝑁
𝑘𝑁

· ℎ 𝑗k
(
𝑢 𝑗 (k)

) }
.

We can show that the term in the argmax is constant in 𝑡 𝑗 . First,

note that the maps ℎ
𝑗

k are independent of player 𝑗 ’s action, which,



in particular, implies ℎ
𝑗

k = ℎ
𝑗

1,k− 𝑗
. Then, rearranging yields∑︁

k∈𝑆
𝑠1

𝑘1

· . . . · 𝑠𝑖−1

𝑘𝑖−1

· 𝑡𝑖
𝑘𝑖

· 𝑠𝑖+1

𝑘𝑖+1

· . . . · 𝑠𝑁
𝑘𝑁

· ℎ 𝑗k
(
𝑢 𝑗 (k)

)
𝑢 𝑗≡0

=
∑︁
k− 𝑗

(
𝑠1

𝑘1

· . . . · 𝑠 𝑗−1

𝑘 𝑗−1

· 𝑠 𝑗+1

𝑘 𝑗+1

· . . . · 𝑠𝑁
𝑘𝑁

· ℎ 𝑗
1,k− 𝑗

(0) ·
𝑚 𝑗∑︁
𝑘 𝑗=1

𝑡
𝑗

𝑘 𝑗

)
(†)
=

∑︁
k− 𝑗

𝑠1

𝑘1

· . . . · 𝑠 𝑗−1

𝑘 𝑗−1

· 𝑠 𝑗+1

𝑘 𝑗+1

· . . . · 𝑠𝑁
𝑘𝑁

· ℎ 𝑗
1,k− 𝑗

(0) .

Since the term in the argmax is constant in 𝑡 𝑗 , any strategy of

player 𝑗 is a best response to (𝑠1, . . . , 𝑠 𝑗−1, 𝑠 𝑗+1, . . . , 𝑠𝑖−1, 𝑒𝑙 , 𝑠
𝑖+1, . . . 𝑠𝑁 ).

Therefore, we obtain the equivalence (∗) by removing/adding the

redundant condition on each 𝑠 𝑗 , 𝑗 ≠ 𝑖 , to be a best response.

All in all, we proved that the sets BR𝑢𝑖 (s−𝑖 ) and BR𝐻 𝑖 (𝑢𝑖 ) (s
−𝑖 )

contain the same pure strategies. Corollary C.1 therefore yields set

equality. □

Lemma. Suppose a map 𝐻 𝑖 universally preserves best responses.
Then 𝐻 𝑖 only depends on the strategy choices of the opponents.

Proof. Let the pure strategy choice of the opponents be k−𝑖 ∈
𝑆−𝑖 . Pick some 𝑧 ∈ R and set 𝑢𝑖 ≡ 𝑧. Then we can reformulate

ℎ𝑖
1,k−𝑖

(𝑧) = . . . = ℎ𝑖
𝑚𝑖 ,k−𝑖

(𝑧)

⇐⇒ ∀𝑙 ∈ [𝑚𝑖 ] : ℎ𝑖
𝑙,k−𝑖

(𝑧) = max

𝑝∈[𝑚𝑖 ]
ℎ𝑖
𝑝,k−𝑖

(𝑧)

𝑢𝑖≡𝑧⇐⇒ ∀𝑙 ∈ [𝑚𝑖 ] :

ℎ𝑖
𝑙,k−𝑖

(𝑢𝑖 (𝑙, k−𝑖 )) = max

𝑝∈[𝑚𝑖 ]
ℎ𝑖
𝑝,k−𝑖

(𝑢𝑖 (𝑝, k−𝑖 ))

⇐⇒ ∀𝑙 ∈ [𝑚𝑖 ] : 𝐻 𝑖 (𝑢𝑖 ) (𝑙, k−𝑖 ) = max

𝑝∈[𝑚𝑖 ]
𝐻 𝑖 (𝑢𝑖 ) (𝑝, k−𝑖 )

⇐⇒ ∀𝑙 ∈ [𝑚𝑖 ] : 𝑒𝑙 = 𝑙 ∈ BR𝐻 𝑖 (𝑢𝑖 ) (𝑠
−𝑖 = k−𝑖 )

(∗)
⇐⇒ ∀𝑙 ∈ [𝑚𝑖 ] : 𝑒𝑙 = 𝑙 ∈ BR𝑢𝑖 (𝑠−𝑖 = k−𝑖 )
⇐⇒ ∀𝑙 ∈ [𝑚𝑖 ] : 𝑢𝑖 (𝑙, k−𝑖 ) = max

𝑝∈[𝑚𝑖 ]
𝑢𝑖 (𝑝k−𝑖 )

𝑢𝑖≡𝑧⇐⇒ ∀𝑙 ∈ [𝑚𝑖 ] : 𝑧 = max

𝑝∈[𝑚𝑖 ]
𝑧 .

In (∗), we use that 𝐻 𝑖 is universally best response preserving.

With the last line of the equivalence chain above being a univer-

sally true statement, we obtain that the first line also holds true.

Since 𝑧 was chosen arbitrarily, we can conclude ℎ𝑖
1,𝑘−𝑖

= . . . =

ℎ𝑖
𝑚𝑖 ,𝑘−𝑖

. □

Remark. A distance distortion function Δℎ1

k−1

, as defined in (4),

is skew-symmetric:

∀𝑧,𝑤 ∈ R : Δℎ1

k−1

(𝑧,𝑤) = −Δℎ1

k−1

(𝑤, 𝑧) . (10)

The upcoming lemma reveals an important preliminary observa-

tion on how the distance distortion functions Δℎ1

k−1

relate to each

other. It highlights how the distorted utility distances are affected

by a strategy change of a player 𝑗 ≠ 1 from, e.g., some pure strategy

𝑘 𝑗 ∈ [𝑚 𝑗 ] \ {1} to their pure strategy 1 ∈ [𝑚 𝑗 ].

We formulate the lemmawith index variables p−1 = (𝑝2, . . . , 𝑝𝑁 )
instead of k−1 = (𝑘2, . . . , 𝑘𝑁 ) in order to avoid confusion in the

proof of the subsequent Lemma 7.5.

Lemma B.1. Suppose transformation map 𝐻1 universally preserves
best responses. Take a player 𝑗 ∈ [𝑁 ] \{1} and profile p−1 ∈ 𝑆−1 with
𝑝 𝑗 ≠ 1. Define p′−1

∈ 𝑆−1 to be the same as p−1 except for player 𝑗 ’s
choice which shall be set to 𝑝′

𝑗
= 1. Then, for all 𝑧, 𝑧′,𝑤,𝑤 ′ ∈ R:

𝑧 −𝑤 ≥ 𝑧′ −𝑤 ′ ⇐⇒ Δℎ1

p−1

(𝑧,𝑤) ≥ Δℎ1

p′−1

(𝑧′,𝑤 ′) .

Proof. Take a transformationmap𝐻1
that universally preserves

the best response sets. Then by Lemma 7.3, its maps ℎ1

k only depend

on the strategy choices k−1 of the opponents. Fix 𝑗, p−1, p′−1
and

𝑧, 𝑧′,𝑤,𝑤 ′
as described in the lemma statement. We will construct

a utility function 𝑢1 for these parameters such that a universally

best response preserving 𝐻1
reveals to satisfies the property of this

lemma.

Set𝑢1 (1, p−1) := 𝑧 and𝑢1 (1, p′−1
) := 𝑤 ′

. Additionally, for all pure

strategies 𝑙 ∈ [𝑚1] \{1}, set𝑢1 (𝑙, p−1) := 𝑤 and𝑢1 (𝑙, p′−1
) := 𝑧′. All

these utility value assignments are possible because of 𝑝 𝑗 ≠ 1 = 𝑝′
𝑗
.

The utility payoffs of PL1 (i.e., the values of 𝑢1) from other pure

strategy outcomes k ∈ 𝑆 can be set arbitrarily. Finally, consider the

opponents’ mixed strategy profile s−1
:= 1

2
p−1 + 1

2
p′−1

∈ Δ(𝑆−1).
Then we derive:

𝑧 −𝑤 ≥ 𝑧′ −𝑤 ′

⇐⇒ ∀𝑙 ∈ [𝑚1] \ {1} :

𝑢1 (1, p−1) − 𝑢1 (𝑙, p−1) ≥ 𝑢1 (𝑙, p′−1
) − 𝑢1 (1, p′−1

)

Reorder and divide by 2

⇐⇒ ∀𝑙 ∈ [𝑚1] \ {1} :

1

2

𝑢1 (1, p−1) +
1

2

𝑢1 (1, p′−1
)

≥ 1

2

𝑢1 (𝑙, p−1) +
1

2

𝑢1 (𝑙, p′−1
)

⇐⇒ ∀𝑙 ∈ [𝑚1] \ {1} : 𝑢1 (𝑒1, s−1) ≥ 𝑢1 (𝑒𝑙 , s−1)
⇐⇒ 𝑒1 ∈ BR𝑢1

(s−1)

𝐻1 is universally preserves best responses

⇐⇒ 𝑒1 ∈ BR𝐻 1 (𝑢1 ) (s
−1)

⇐⇒ ∀𝑙 ∈ [𝑚1] \ {1} :

𝐻1 (𝑢1) (𝑒1, s−1) ≥ 𝐻1 (𝑢1) (𝑒𝑙 , s−1)
⇐⇒ ∀𝑙 ∈ [𝑚1] \ {1} :

1

2

ℎ1

1,p−1

(𝑢1 (1, p−1)) +
1

2

ℎ1

1,p′−1

(𝑢1 (1, p′−1
))

≥ 1

2

ℎ1

𝑙,p−1

(𝑢1 (𝑙, p−1)) +
1

2

ℎ1

𝑙,p′−1

(𝑢1 (𝑙, p′−1
))

⇐⇒ ∀𝑙 ∈ [𝑚1] \ {1} :

ℎ1

1,p−1

(𝑧) + ℎ1

1,p′−1

(𝑤 ′) ≥ ℎ1

𝑙,p−1

(𝑤) + ℎ1

𝑙,p′−1

(𝑧′)



𝐻1 does not depend on the pure strategy choice of player 1

⇐⇒ ℎ1

p−1

(𝑧) + ℎ1

p′−1

(𝑤 ′) ≥ ℎ1

p−1

(𝑤) + ℎ1

p′−1

(𝑧′)

⇐⇒ ℎ1

p−1

(𝑧) − ℎ1

p−1

(𝑤) ≥ ℎ1

p′−1

(𝑧′) − ℎ1

p′−1

(𝑤 ′)

⇐⇒ Δℎ1

p−1

(𝑧,𝑤) ≥ Δℎ1

p′−1

(𝑧′,𝑤 ′)

□

Lemma. Suppose transformation 𝐻1 universally preserves best re-
sponses. Then the pure-strategy maps in 𝐻1 equally distort distances:

∀k−1 ∈ 𝑆−1
: Δℎ1

k−1

= Δℎ1

1−1

where 1−1 := (1, . . . , 1) ∈ 𝑆−1.

Proof. Take a transformationmap𝐻1
that universally preserves

the best response sets. Then by Lemma 7.3, its maps ℎ1

k only depend

on the strategy choices k−1 of the opponents. Fix k−1 ∈ 𝑆−1
. Recall

that the elements 𝑗 ≥ 2 and p ∈ 𝑆−1
in B.1 can be chosen arbitrarily

5
.

So we can apply B.1 on a trivially true statement to get for all

𝑧,𝑤 ∈ R:

𝑧 −𝑤 ≥ 𝑧 −𝑤
=⇒ ∀𝑗 ∈ [𝑁 ] \ {1} :

Δℎ1

𝑘2,...,𝑘 𝑗−1,𝑘 𝑗 ,1,...,1
(𝑧,𝑤)

≥ Δℎ1

𝑘2,...,𝑘 𝑗−1,1,1,...,1
(𝑧,𝑤)

=⇒ Δℎ1

𝑘2,...,𝑘𝑁 −1,𝑘𝑁
(𝑧,𝑤) ≥ Δℎ1

𝑘2,...,𝑘𝑁 −1,1
(𝑧,𝑤)

≥ . . . ≥ Δℎ1

1,...,1 (𝑧,𝑤) .

With skew-symmetry, we similarly obtain

𝑤 − 𝑧 ≥ 𝑤 − 𝑧
=⇒ ∀𝑗 ∈ [𝑁 ] \ {1} :

Δℎ1

𝑘2,...,𝑘 𝑗−1,𝑘 𝑗 ,1,...,1
(𝑤, 𝑧)

≥ Δℎ1

𝑘2,...,𝑘 𝑗−1,1,1,...,1
(𝑤, 𝑧)

=⇒ Δℎ1

𝑘2,...,𝑘𝑁 −1,𝑘𝑁
(𝑤, 𝑧) ≥ Δℎ1

𝑘2,...,𝑘𝑁 −1,1
(𝑤, 𝑧)

≥ . . . ≥ Δℎ1

1,...,1 (𝑤, 𝑧)
· (−1)
=⇒ Δℎ1

𝑘2,...,𝑘𝑁 −1,𝑘𝑁
(𝑧,𝑤) ≤ Δℎ1

1,...,1 (𝑧,𝑤) .

Putting both together, we have for all 𝑧,𝑤 ∈ R:

Δℎ1

k−1

(𝑧,𝑤) = Δℎ1

𝑘2,...,𝑘𝑁 −1,𝑘𝑁
(𝑧,𝑤)

= Δℎ1

1,...,1 (𝑧,𝑤) = Δℎ1

1−1

(𝑧,𝑤) .

□

Lemma. Suppose transformation 𝐻1 universally preserves best re-
sponses. Then we obtain for all k−1 ∈ 𝑆−1 that

(1) map ℎ1

k−1

is strictly increasing, and that

(2) map ℎ1

k−1

distorts distances independently of their reference
points:

∀𝑧, 𝑧′, 𝜆 ∈ R : Δℎ1

k−1

(𝑧 + 𝜆, 𝑧) = Δℎ1

k−1

(𝑧′ + 𝜆, 𝑧′) . (11)

5
We required 𝑝 𝑗 ≠ 1, but this is irrelevant for the argument we are making here.

Proof. Take a transformationmap𝐻1
that universally preserves

the best response sets. Then by Lemma 7.3, its maps ℎ1

k only depend

on the strategy choices k−1 of the opponents.

1. Let us first consider ℎ1

2,1,...,1
that is associated to the pure

strategy profile (2, 1, . . . , 1) ∈ 𝑆−1
. Apply B.1 in the upcoming line

(∗) with parameters 𝑗 = 2, p−1 = (2, 1, . . . , 1), and 𝑧′ = 𝑤 ′ ∈ R to

get for arbitrary 𝑧,𝑤 ∈ R:

𝑧 ≥ 𝑤 ⇐⇒ 𝑧 −𝑤 ≥ 0 = 𝑧′ −𝑤 ′

(∗)
⇐⇒ Δℎ1

2,1,...,1 (𝑧,𝑤) ≥ Δℎ1

1−1

(𝑧′,𝑤 ′) 𝑧
′=𝑤′
= 0

⇐⇒ ℎ1

2,1,...,1 (𝑧) ≥ ℎ
1

2,1,...,1 (𝑤) .

Consequently, we have for arbitrary 𝑧, 𝑤̄ ∈ R:

𝑧 > 𝑤̄ ⇐⇒ 𝑧 ≥ 𝑤̄ and 𝑤̄ ≱ 𝑧

by above

⇐⇒ ℎ1

2,1,...,1 (𝑧) ≥ ℎ
1

2,1,...,1 (𝑤̄)
and ℎ1

2,1,...,1 (𝑤̄) ≱ ℎ1

2,1,...,1 (𝑧)
⇐⇒ ℎ1

2,1,...,1 (𝑧) > ℎ
1

2,1,...,1 (𝑤̄) .

This shows that ℎ1

2,1,...,1
is strictly increasing.

For arbitrary k−1 ∈ 𝑆−1
, we can then use Lemma 7.5 to obtain

𝑧 > 𝑤̄ ⇐⇒ ℎ1

2,1,...,1 (𝑧) > ℎ
1

2,1,...,1 (𝑤̄)
⇐⇒ Δℎ1

2,1,...,1 (𝑧, 𝑤̄) > 0

⇐⇒ Δℎ1

k−1

(𝑧, 𝑤̄) = Δℎ1

1−1

(𝑧, 𝑤̄)

= Δℎ1

2,1,...,1 (𝑧, 𝑤̄) > 0

⇐⇒ ℎ1

k−1

(𝑧) > ℎ1

k−1

(𝑤̄) .

Thus, ℎ1

k−1

is strictly increasing as well.

2. Because of Lemma 7.5, we only need to show that the map

Δℎ1

1−1

satisfies property (11), which would consequently imply the

property for all maps Δℎ1

k−1

.

Fix 𝑧, 𝑧′, 𝜆 ∈ R. Then the upcoming equivalence chain uses skew-

symmetry (10) in (∗), Lemma 7.5 in (†), and B.1 in (★) for parame-

ters 𝑗 = 2 and p−1 = (2, 1, . . . , 1):

Δℎ1

1−1

(𝑧 + 𝜆, 𝑧) = Δℎ1

1−1

(𝑧′ + 𝜆, 𝑧′)
(∗)
⇐⇒ Δℎ1

1−1

(𝑧 + 𝜆, 𝑧) ≥ Δℎ1

1−1

(𝑧′ + 𝜆, 𝑧′)
and Δℎ1

1−1

(𝑧, 𝑧 + 𝜆) ≥ Δℎ1

1−1

(𝑧′, 𝑧′ + 𝜆)
(†)
⇐⇒ Δℎ1

2,...,1 (𝑧 + 𝜆, 𝑧) ≥ Δℎ1

1−1

(𝑧′ + 𝜆, 𝑧′)
and Δℎ1

2,...,1 (𝑧, 𝑧 + 𝜆) ≥ Δℎ1

1−1

(𝑧′, 𝑧′ + 𝜆)
(★)
⇐⇒ 𝑧 + 𝜆 − 𝑧 ≥ 𝑧′ + 𝜆 − 𝑧′

and 𝑧 − (𝑧 + 𝜆) ≥ 𝑧′ − (𝑧′ + 𝜆) .

The last line is a true statement and thus, the first line as well. Be-

cause 𝑧, 𝑧′, 𝜆 ∈ R were taken arbitrarily, map ℎ1

1−1

satisfies property

(11). □



Theorem. Let 𝐻 = {𝐻 𝑖 }𝑖∈[𝑁 ] be a separable game transformation.
Then:

𝐻 universally preserves Nash equilibrium sets (i)

⇐⇒ for each player 𝑖 , map 𝐻 𝑖 universally (ii)

preserves best responses

⇐⇒ 𝐻 is a positive affine transformation. (iii)

Proof. See main body. □

C HELPING LEMMAS
This appendix section does not contain original ideas and is just

included for completeness.

Denote the restriction of a best response set to its pure strategies

as PBR𝑢𝑖 (s−𝑖 ) := BR𝑢𝑖 (s−𝑖 )∩{𝑒1, . . . , 𝑒𝑚𝑖
}. Then, we have that best

responses are always convex combinations of pure best responses:

Lemma. Take a game 𝐺 = {𝑢𝑖 }𝑖∈[𝑁 ] , fix a player 𝑖 ∈ [𝑁 ] and a
strategy profile s−𝑖 ∈ Δ(𝑆−𝑖 ) of the opponents. Then, we have for
𝑡𝑖 ∈ Δ(𝑆𝑖 ):

𝑡𝑖 ∈ BR𝑢𝑖 (s−𝑖 )
⇐⇒ ∀𝑘 ∈ [𝑚𝑖 ] : 𝑡𝑖

𝑘
= 0 or 𝑒𝑘 ∈ PBR𝑢𝑖 (s−𝑖 ) .

(12)

Proof. We can observe

𝑢𝑖 (𝑡𝑖 , s−𝑖 )

=
∑︁
k∈𝑆

𝑠1

𝑘1

· . . . · 𝑠𝑖−1

𝑘𝑖−1

· 𝑡𝑖
𝑘𝑖

· 𝑠𝑖+1

𝑘𝑖+1

· . . . · 𝑠𝑁
𝑘𝑁

· 𝑢𝑖 (k)

=

𝑚𝑖∑︁
𝑘𝑖=1

𝑡𝑖
𝑘𝑖

·
∑︁

k−𝑖 ∈𝑆−𝑖
𝑠1

𝑘1

· . . . · 𝑠𝑖−1

𝑘𝑖−1

· 𝑠𝑖+1

𝑘𝑖+1

· . . .

· 𝑠𝑁
𝑘𝑁

· 𝑢𝑖 (k)

=

𝑚𝑖∑︁
𝑘𝑖=1

𝑡𝑖
𝑘𝑖

· 𝑢𝑖 (𝑒𝑘𝑖 , s
−𝑖 ) =

𝑚𝑖∑︁
𝑘=1

𝑡𝑖
𝑘
· 𝑢𝑖 (𝑒𝑘 , s−𝑖 ) .

(13)

Thus, the mixed strategy 𝑡𝑖 of player 𝑖 only determines the convex

combination of the attainable utility values

(
𝑢𝑖 (𝑒𝑘 , s−𝑖 )

)
𝑘
. There-

fore, any best response strategy 𝑡𝑖 must only randomize over maxi-

mal values within

(
𝑢𝑖 (𝑒𝑘 , s−𝑖 )

)
𝑘
, that is, over pure best response

strategies. □

Corollary C.1. Two best response sets (of possibly different games)
are equal if and only if they contain the same pure best responses.

Lemma. Take a PAT 𝐻PAT =
{
𝛼𝑖 ,𝐶𝑖

}
𝑖∈[𝑁 ] and any game 𝐺 =

{𝑢𝑖 }𝑖∈[𝑁 ] . Then, the transformed game 𝐻PAT (𝐺) = {𝑢′
𝑖
}𝑖∈[𝑁 ] has

the same best response sets as𝐺 . Consequently, 𝐻PAT (𝐺) also has the
same Nash equilibrium set as 𝐺 .

Proof. The proof is an appropriate generalization of the known

proof for Lemma 5.1.

Take a game {𝑢𝑖 }𝑖∈[𝑁 ] , fix a player 𝑖 and the opponents’ strategy
choices s−𝑖 . Then, we have

BR𝑢′
𝑖
(s−𝑖 ) = argmax

𝑡𝑖 ∈Δ(𝑆𝑖 )

{
𝑢′𝑖 (𝑡

𝑖 , s−𝑖 )
}

= argmax

𝑡𝑖 ∈Δ(𝑆𝑖 )

{
∑︁
k∈𝑆

𝑠1

𝑘1

· . . . · 𝑠𝑖−1

𝑘𝑖−1

· 𝑡𝑖
𝑘𝑖

· 𝑠𝑖+1

𝑘𝑖+1

· . . . · 𝑠𝑁
𝑘𝑁

· 𝑢′𝑖 (k)
}

(1)
= argmax

𝑡𝑖 ∈Δ(𝑆𝑖 )

{ ∑︁
k∈𝑆

𝑠1

𝑘1

· . . . · 𝑠𝑖−1

𝑘𝑖−1

· 𝑡𝑖
𝑘𝑖

· 𝑠𝑖+1

𝑘𝑖+1

· . . .

· 𝑠𝑁
𝑘𝑁

·
(
𝛼𝑖 · 𝑢𝑖 (k) + 𝑐𝑖k−𝑖

)}
(∗)
= argmax

𝑡𝑖 ∈Δ(𝑆𝑖 )

{
𝛼𝑖 ·

∑︁
k∈𝑆

𝑠1

𝑘1

· . . . · 𝑠𝑖−1

𝑘𝑖−1

· 𝑡𝑖
𝑘𝑖

· 𝑠𝑖+1

𝑘𝑖+1

· . . . · 𝑠𝑁
𝑘𝑁

· 𝑢𝑖 (k)

+
∑︁

k−𝑖 ∈𝑆−𝑖
𝑠1

𝑘1

· . . . · 𝑠𝑖−1

𝑘𝑖−1

· 𝑠𝑖+1

𝑘𝑖+1

· . . . · 𝑠𝑁
𝑘𝑁

· 𝑐𝑖k−𝑖 · 1

}
(†)
= argmax

𝑡𝑖 ∈Δ(𝑆𝑖 )

{
∑︁
k∈𝑆

𝑠1

𝑘1

· . . . · 𝑠𝑖−1

𝑘𝑖−1

· 𝑡𝑖
𝑘𝑖

· 𝑠𝑖+1

𝑘𝑖+1

· . . . · 𝑠𝑁
𝑘𝑁

· 𝑢𝑖 (k)
}

= argmax

𝑡𝑖 ∈Δ(𝑆𝑖 )

{
𝑢𝑖 (𝑡𝑖 , s−𝑖 )

}
= BR𝑢𝑖 (s−𝑖 )

We obtain the second summand in (∗) by changing the order of

summation and multiplication such that

∑𝑚𝑖

𝑘𝑖=1
𝑡𝑖 remains as the

most inner sum. Since

∑𝑚𝑖

𝑘𝑖=1
𝑡𝑖 = 1, this factor can be dropped. We

get line (†) because the argmax operator is neither affected by a

constant in 𝑡𝑖 (such as the secoond summand) nor by rescaling with

a positive factor (such as 𝛼𝑖 ).

Finally, the definition of a Nash equilibrium immediately implies

that strategy profile 𝑠 is a Nash equilibrium for the PAT transformed

game {𝑢′
𝑖
}𝑖∈[𝑁 ] if and only if it was one for the original game

{𝑢𝑖 }𝑖∈[𝑁 ] . □

D MONOTONE AND ADDITIVE IMPLIES
LINEAR

The proof of the following lemma is taken from ProofWiki [34, 35]

and just included for completeness.

Lemma. Take a map ℎ : R −→ R which is monotone and additive.
Then:

(1) ℎ(0) = 0 .
(2) ∀𝑥 ∈ R : −ℎ(−𝑥) = ℎ(𝑥) .
(3) ∀𝑛 ∈ N, 𝑥 ∈ R : ℎ(𝑛 · 𝑥) = 𝑛 · ℎ(𝑥) .
(4) ∀𝑝 ∈ Z, 𝑥 ∈ R : ℎ(𝑝 · 𝑥) = 𝑝 · ℎ(𝑥) .
(5) ∀𝑟 ∈ Q, 𝑥 ∈ R : ℎ(𝑟 · 𝑥) = 𝑟 · ℎ(𝑥) .
(6) ∀𝑥 ∈ R : ℎ(𝑥) = 𝑥 · ℎ(1) .

In particular, the last conclusion yields that ℎ is linear.

Proof. The first three conclusions follow from ℎ being additive.



1.

ℎ(0) = ℎ(0) + ℎ(𝑥) − ℎ(𝑥) = ℎ(0 + 𝑥) − ℎ(𝑥) = 0 .

2.

∀𝑥 ∈ R : −ℎ(−𝑥) = −
(
ℎ(−𝑥) + ℎ(𝑥)

)
+ ℎ(𝑥)

= −ℎ(−𝑥 + 𝑥) + ℎ(𝑥)
= −ℎ(0) + ℎ(𝑥)
= ℎ(𝑥) .

3. Proof by induction. The induction start 𝑛 = 1 is clear, so

assume it to be true for 𝑛 ∈ N.
Then, for all 𝑥 ∈ R:

ℎ

(
(𝑛 + 1) · 𝑥

)
= ℎ(𝑛 · 𝑥 + 𝑥) = ℎ(𝑛 · 𝑥) + ℎ(𝑥)

= 𝑛 · ℎ(𝑥) + ℎ(𝑥) = (𝑛 + 1) · ℎ(𝑥) .

4. The statement for the case 𝑝 ∈ Z ∩ {𝑧 ≥ 0} follows from
the first and third conclusion. If 𝑝 ∈ Z ∩ {𝑧 < 0}, we can use the

second and third conclusion to obtain for all 𝑥 ∈ R:

ℎ(𝑝 · 𝑥) = ℎ
(
(−𝑝) · (−𝑥)

)
= (−𝑝) · ℎ(−𝑥)

= (−𝑝) ·
(
− ℎ(𝑥)

)
= 𝑝 · ℎ(𝑥) .

5. Write 𝑟 =
𝑝
𝑞 where 𝑝 ∈ Z, 𝑞 ∈ N. Then, by the fourth conclu-

sion:

ℎ(𝑟 · 𝑥) = 1

𝑞
· 𝑞 · ℎ

(𝑝
𝑞
· 𝑥

)
=

1

𝑞
ℎ

(
𝑞 · 𝑝

𝑞
· 𝑥

)
=

1

𝑞
ℎ(𝑝 · 𝑥)

=
1

𝑞
· 𝑝 · ℎ(𝑥) = 𝑟 · ℎ(𝑥) .

6. Suppose 𝑥 ∈ Q. Then, the fifth conclusion yields

ℎ(𝑥) = ℎ(𝑥 · 1) = 𝑥 · ℎ(1) .

Therefore, suppose 𝑥 ∈ R \ Q.
Since Q is dense in R, we can take an increasing sequence

(𝑟𝑛)𝑛∈N ⊂ Q that converges to 𝑥 (from below) and a decreasing

sequence (𝑠𝑛)𝑛∈N ⊂ Q that converges to 𝑥 (from above). In the

case where ℎ is an increasing function, we have for all 𝑛 ∈ N:

𝑟𝑛 ≤ 𝑥 ≤ 𝑠𝑛 =⇒ ℎ(𝑟𝑛) ≤ ℎ(𝑥) ≤ ℎ(𝑠𝑛)
=⇒ 𝑟𝑛 · ℎ(1) ≤ ℎ(𝑥) ≤ 𝑠𝑛 · ℎ(1) .

Taking the limit 𝑛 → ∞ in the last inequality chain yields

𝑥 · ℎ(1) ≤ ℎ(𝑥) ≤ 𝑥 · ℎ(1) .

If ℎ is a decreasing function instead of an increasing one, we get the

same implications but with reverse inequalities in the second and

last inequality chains. The end result, however, will be the same.

Putting everything together yields the sixth conclusion.

□

Corollary. Let ℎ : R −→ R be monotone and satisfy for all 𝑧, 𝑧′, 𝜆 ∈
R:

ℎ(𝑧 + 𝜆) − ℎ(𝑧) = ℎ(𝑧′ + 𝜆) − ℎ(𝑧′) . (14)

Then h is affine linear, i.e., there exist some 𝑎, 𝑐 ∈ R such that for all
𝑧 ∈ R : ℎ(𝑧) = 𝑎𝑧 + 𝑐 .

Proof. Define ℎ′ (𝑧) := ℎ(𝑧) − ℎ(0), which is still a monotone

function. By our assumption on ℎ, we have for all 𝑥,𝑦 ∈ R:

ℎ′ (𝑥 + 𝑦) = ℎ(𝑥 + 𝑦) − ℎ(0)
= ℎ(𝑥 + 𝑦) − ℎ(𝑦) + ℎ(𝑦) − ℎ(0)
= ℎ(𝑥) − ℎ(0) + ℎ(𝑦) − ℎ(0)
= ℎ′ (𝑥) + ℎ′ (𝑦) .

Therefore, we can apply Lemma 7.7 to ℎ′ to get 𝑎 ∈ R such that for

all 𝑧 ∈ R

ℎ(𝑧) = ℎ(𝑧) − ℎ(0) + ℎ(0) = ℎ′ (𝑧) + ℎ(0)
= 𝑎𝑧 + ℎ(0) =: 𝑎𝑧 + 𝑐 .

□

E UTILITY THEORY IN GAME THEORY
This section revises some related utility theory and is just included

for completeness. A proper treatment can be found in e.g. Mas-

Colell et al. [25].

Preferences and Utility Functions. Suppose a decision maker can

choose one outcome from a space𝐶 of 𝑁 -many outcomes (where 𝑁

finite). Moreover, the decision maker prefers some outcomes over

others which is captured by her preference relation ⪰ on 𝐶 .

We typically describe the preferences of the decision maker

through utility functions:

Definition E.1. A utility function 𝑢 : 𝐶 −→ R is said to represent

a preference relation ⪰ if for all 𝑐, 𝑑 ∈ 𝐶 , we have 𝑐 ⪰ 𝑑 ⇐⇒
𝑢 (𝑐) ≥ 𝑢 (𝑑).

Multiple utility functions can represent the same preference

relation. Their practical use is that they translate the preference

relation ⪰ into comparisons of numerical values.

On the other hand, starting with a utility function 𝑢 yields an

induced preference relation ⪰ through

∀𝑐, 𝑑 ∈ 𝐶 : 𝑐 ⪰ 𝑑 : ⇐⇒ 𝑢 (𝑐) ≥ 𝑢 (𝑑) .

Lotteries and the Expected Utility. Now suppose we want to al-

low the decision maker to choose each outcome in 𝐶 with some

probability. Call such a probability distribution 𝐿 = (𝑝1, . . . , 𝑝𝑁 )
over 𝐶 a lottery. The 𝑖-th outcome in C can then be represented

by the lottery 𝑒𝑖 ∈ R𝑛 . Thus, we extended the choice space of the

decision maker from 𝐶 to the space L of lotteries. We can also

extend Definition E.1 to preference relations ⪰ over L by requiring

𝑢 : L −→ R and ∀𝐿,𝑀 ∈ L : 𝐿 ⪰ 𝑀 ⇐⇒ 𝑢 (𝐿) ≥ 𝑢 (𝑀).
We will be especially interested in those utility functions that

simply compute the expected utility of randomly choosing an out-

come according to 𝐿.

Definition. A von Neumann-Morgenstern (NM) expected utility

function is a map 𝑈 : L −→ R that is determined by its values

𝑈 (𝑒𝑖 ) on the outcomes 𝑒𝑖 ∈ 𝐶, 𝑖 ∈ [𝑁 ], and by

∀𝐿 = (𝑝1, . . . , 𝑝𝑁 ) : 𝑈 (𝐿) =
𝑁∑︁
𝑖=1

𝑝𝑖 ·𝑈 (𝑒𝑖 ) .

The following theorem describes the preference relations that

can be represented by a NM expected utility function. The theorem



relies on four properties - called axioms - that a preference rela-
tion ⪰ can satisfy: Completeness

6
, Transitivity

7
, Continuity

8
and

Independence
9
.

Theorem 3 (Expected Utility Theorem). Let preference relation ⪰
satisfy the four axioms mentioned above. Then ⪰ can be represented
by a NM expected utility function 𝑈 . Moreover, the representing 𝑈 is
unique up to a positive affine transformation. That is, if𝑈 and𝑈 ′ are
NM expected utility functions representing ⪰, then there exist 𝛼, 𝑐 ∈ R
such that for all 𝐿 ∈ L, we have𝑈 ′ (𝐿) = 𝛼 ·𝑈 (𝐿) + 𝑐 .

Proof. See Proposition 6.B.2 and 6.B.3 from Mas-Colell et al.

[25]. □

In contrast to Theorem 3, suppose we start with an arbitrary NM

expected utility function𝑈 . Then𝑈 induces a preference relation

⪰ on L by

∀𝐿, 𝐿′ ∈ L : 𝐿 ⪰ 𝐿′ : ⇐⇒ 𝑈 (𝐿) ≥ 𝑈 (𝐿′) .
By construction, 𝑈 represents ⪰. One can also show that this in-

duced preference relation ⪰ satisfies the four axioms. Therefore, by

Theorem 3,𝑈 uniquely represents the induced ⪰ up to a PAT.

Connections to Game Theory. Take a multiplayer game 𝐺 =(
𝑁, {𝑆𝑖 }𝑖∈[𝑁 ] , {𝑢𝑖 }𝑖∈[𝑁 ]

)
. Then, the utility functions 𝑢𝑖 induce

each player’s preferences according to the following paragraphs:

Consider a game that only allows for pure strategy play. Then,

given some player 𝑖 and the pure strategy profile 𝑠−𝑖 of the oppo-
nents, the “sliced” utility function 𝑢𝑖 (·, 𝑠−𝑖 ) induces a preference
relation ⪰ for player 𝑖 over her strategy set 𝑆𝑖 .

Now suppose that we allow for mixed strategy play in the games.

In that case, each element in Δ(𝑆𝑖 ) can be viewed as a lottery over

the choice set 𝐶 := 𝑆𝑖 . Moreover, player 𝑖’s utility payoff from a

mixed strategy profile 𝑠 ∈
𝑁?
𝑖=1

Δ(𝑆𝑖 ) is

𝑢𝑖 (𝑠𝑖 , 𝑠−𝑖 ) =
𝑚𝑖∑︁
𝑘𝑖=1

𝑠𝑖
𝑘𝑖

· 𝑢𝑖 (𝑒𝑘𝑖 , 𝑠
−𝑖 ) .

Therefore, 𝑢𝑖 (·, 𝑠−𝑖 ) has the form of a NM expected utility function.

This induces a preference relation ⪰𝑖,𝑠−𝑖 on the space of lotter-

ies Δ(𝑆𝑖 ) with ⪰𝑖,𝑠−𝑖 satisfying the four axioms. Hence, 𝑢𝑖 (·, 𝑠−𝑖 )
represents the induced preference relation ⪰𝑖,𝑠−𝑖 uniquely up to a

PAT.

6
For all 𝐿,𝑀 ∈ L, we have 𝐿 ⪰ 𝑀 or 𝐿 ⪯ 𝑀 (or both, in which case we write

𝐿 ∼ 𝑀).

7
For all 𝐿,𝑀, 𝑁 ∈ L, if 𝐿 ⪰ 𝑀 and𝑀 ⪰ 𝑁 , then 𝐿 ⪰ 𝑁 .

8
For all 𝐿,𝑀, 𝑁 ∈ L with 𝐿 ⪰ 𝑀 ⪰ 𝑁 , there exists probability 𝑝 ∈ [0, 1] such that

𝑝 · 𝐿 + (1 − 𝑝 ) · 𝑁 ∼ 𝑀 .

9
For all 𝐿,𝑀, 𝑁 ∈ L and 𝑝 ∈ [0, 1], we have 𝐿 ⪰ 𝑀 if and only if 𝑝 ·𝐿+ (1−𝑝 ) ·𝑁 ⪰
𝑝 ·𝑀 + (1 − 𝑝 ) · 𝑁 .
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